September  2003, 9(5): 1277-1292. doi: 10.3934/dcds.2003.9.1277

A priori estimates of global solutions of superlinear parabolic problems without variational structure


Institute of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovak Republic


Département de Mathématiques, Université de Picardie, INSSET, 02109 St-Quentin, France

Received  December 2001 Revised  February 2003 Published  June 2003

We consider various classes of superlinear parabolic problems, including reaction-diffusion systems and scalar reaction-diffusion equations with convective or dissipative gradient terms. For these problems we prove uniform a priori estimates for all nonnegative global solutions. The existence of an energy functional for these problems is not known, so that traditional methods for a priori estimates do not apply. We use a different approach based on scaling and Fujita-type theorems. In the case of reaction-diffusion systems, we also obtain some universal bounds, i.e. a priori estimates independent of the initial data.
Citation: Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225


Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711


Ryuichi Suzuki. Universal bounds for quasilinear parabolic equations with convection. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 563-586. doi: 10.3934/dcds.2006.16.563


Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601


J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176


Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318


J.I. Díaz, D. Gómez-Castro. Steiner symmetrization for concave semilinear elliptic and parabolic equations and the obstacle problem. Conference Publications, 2015, 2015 (special) : 379-386. doi: 10.3934/proc.2015.0379


Carmen Cortázar, Marta García-Huidobro, Pilar Herreros. On the uniqueness of bound state solutions of a semilinear equation with weights. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6761-6784. doi: 10.3934/dcds.2019294


Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605


Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721


Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014


Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1473-1506. doi: 10.3934/dcdsb.2012.17.1473


Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013


Tohru Nakamura, Shinya Nishibata. Energy estimate for a linear symmetric hyperbolic-parabolic system in half line. Kinetic & Related Models, 2013, 6 (4) : 883-892. doi: 10.3934/krm.2013.6.883


Sun-Sig Byun, Yunsoo Jang. Calderón-Zygmund estimate for homogenization of parabolic systems. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6689-6714. doi: 10.3934/dcds.2016091


Vincenzo Michael Isaia. Numerical simulation of universal finite time behavior for parabolic IVP via geometric renormalization group. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3459-3481. doi: 10.3934/dcdsb.2017175


Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424


Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367


Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307


Soumen Senapati, Manmohan Vashisth. Stability estimate for a partial data inverse problem for the convection-diffusion equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021060

2020 Impact Factor: 1.392


  • PDF downloads (121)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]