-
Abstract
Developping ideas of S. Li [Tran. Amer. Math. Soc. 301 (1993),
243--249] concerning the notion of $\omega$-chaos we prove that
any transitive continuous map $f$ of the interval is conjugate
to a map $g$ of the interval which possesses an $\omega$-scrambled
set $S$ of full Lebesgue measure. Thus, for any distinct $x, y$ in $S$,
$\omega _g (x)\cap\omega _g(y)$ is non-empty, and $\omega _g(x)
\setminus\omega _g(y)$ is uncountable.
Mathematics Subject Classification: Primary: 26A18, 37D45, 37E05; Secondary: 54H20, 26A30, 37A25.
\begin{equation} \\ \end{equation}
-
Access History
-