- Previous Article
- DCDS Home
- This Issue
-
Next Article
On a generalized Wirtinger inequality
Chaotic trajectories for natural systems on a torus
1. | Department of Mathematics and Applications, University of Palermo, Palermo, Italy |
2. | Department of Mathematics, University of Wisconsin, Madison, United States |
[1] |
Francesca Alessio, Vittorio Coti Zelati, Piero Montecchiari. Chaotic behavior of rapidly oscillating Lagrangian systems. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 687-707. doi: 10.3934/dcds.2004.10.687 |
[2] |
Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. Effective Hamiltonian dynamics via the Maupertuis principle. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1395-1410. doi: 10.3934/dcdss.2020078 |
[3] |
Joey Y. Huang. Trajectory of a moving curveball in viscid flow. Conference Publications, 2001, 2001 (Special) : 191-198. doi: 10.3934/proc.2001.2001.191 |
[4] |
Rodrigo Samprogna, Cláudia B. Gentile Moussa, Tomás Caraballo, Karina Schiabel. Trajectory and global attractors for generalized processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3995-4020. doi: 10.3934/dcdsb.2019047 |
[5] |
Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864 |
[6] |
Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov. Strong convergence of trajectory attractors for reaction–diffusion systems with random rapidly oscillating terms. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2419-2443. doi: 10.3934/cpaa.2020106 |
[7] |
W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 |
[8] |
Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233 |
[9] |
Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127 |
[10] |
V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure and Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115 |
[11] |
Boris Buffoni, Laurent Landry. Multiplicity of homoclinic orbits in quasi-linear autonomous Lagrangian systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 75-116. doi: 10.3934/dcds.2010.27.75 |
[12] |
Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223 |
[13] |
Péter Koltai. A stochastic approach for computing the domain of attraction without trajectory simulation. Conference Publications, 2011, 2011 (Special) : 854-863. doi: 10.3934/proc.2011.2011.854 |
[14] |
Liming Sun, Li-Zhi Liao. An interior point continuous path-following trajectory for linear programming. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1517-1534. doi: 10.3934/jimo.2018107 |
[15] |
Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119 |
[16] |
Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 |
[17] |
Bao-Zhu Guo, Liang Zhang. Local exact controllability to positive trajectory for parabolic system of chemotaxis. Mathematical Control and Related Fields, 2016, 6 (1) : 143-165. doi: 10.3934/mcrf.2016.6.143 |
[18] |
Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685 |
[19] |
Gaocheng Yue. Limiting behavior of trajectory attractors of perturbed reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5673-5694. doi: 10.3934/dcdsb.2019101 |
[20] |
Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]