-
Previous Article
$L^p$ Estimates for the wave equation with the inverse-square potential
- DCDS Home
- This Issue
-
Next Article
Kernel sections for damped non-autonomous wave equations with critical exponent
Kam theory, Lindstedt series and the stability of the upside-down pendulum
1. | Department of Mathematics and Statistics, University of Surrey, GU2 7XH, United Kingdom, United Kingdom |
2. | Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146, Italy |
[1] |
G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure and Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509 |
[2] |
Roman Srzednicki. On periodic solutions in the Whitney's inverted pendulum problem. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2127-2141. doi: 10.3934/dcdss.2019137 |
[3] |
John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations and Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001 |
[4] |
Feng Wang, Jifeng Chu, Zaitao Liang. Prevalence of stable periodic solutions in the forced relativistic pendulum equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4579-4594. doi: 10.3934/dcdsb.2018177 |
[5] |
Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57 |
[6] |
Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139 |
[7] |
Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373 |
[8] |
Mari Paz Calvo, Jesus M. Sanz-Serna. Carrying an inverted pendulum on a bumpy road. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 429-438. doi: 10.3934/dcdsb.2010.14.429 |
[9] |
J. Ángel Cid, Pedro J. Torres. On the existence and stability of periodic solutions for pendulum-like equations with friction and $\phi$-Laplacian. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 141-152. doi: 10.3934/dcds.2013.33.141 |
[10] |
José Laudelino de Menezes Neto, Gerson Cruz Araujo, Yocelyn Pérez Rothen, Claudio Vidal. Parametric stability of a double pendulum with variable length and with its center of mass in an elliptic orbit. Journal of Geometric Mechanics, 2022 doi: 10.3934/jgm.2021031 |
[11] |
Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069 |
[12] |
Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 |
[13] |
Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167 |
[14] |
Jaume Llibre, Claudio A. Buzzi, Paulo R. da Silva. 3-dimensional Hopf bifurcation via averaging theory. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 529-540. doi: 10.3934/dcds.2007.17.529 |
[15] |
Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133 |
[16] |
Jaume Llibre, Amar Makhlouf, Sabrina Badi. $3$ - dimensional Hopf bifurcation via averaging theory of second order. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1287-1295. doi: 10.3934/dcds.2009.25.1287 |
[17] |
Ivan Polekhin. On motions without falling of an inverted pendulum with dry friction. Journal of Geometric Mechanics, 2018, 10 (4) : 411-417. doi: 10.3934/jgm.2018015 |
[18] |
Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413 |
[19] |
Richard Cushman, Jędrzej Śniatycki. Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum. Journal of Geometric Mechanics, 2018, 10 (4) : 419-443. doi: 10.3934/jgm.2018016 |
[20] |
V. Mastropietro, Michela Procesi. Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities. Communications on Pure and Applied Analysis, 2006, 5 (1) : 1-28. doi: 10.3934/cpaa.2006.5.1 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]