-
Abstract
For points $x$ belonging to a basic set $\Lambda$ of an Axiom A
holomorphic endomorphism of $\mathbb P^2$,
one can construct the local stable manifold $W_{\varepsilon_0}^s(x)$
and the local unstable manifolds $W_{\varepsilon_0}^u(\hat x)$.
A priori, $W_{\varepsilon_0}^u(\hat x)$ should depend on the entire
prehistory $\hat x$ of $x$.
However, all known examples have all their local unstable manifolds
depending only on the base point $x$.
Therefore a natural problem is to give actual examples where, for
different prehistories of points in the basic sets of holomorphic
Axiom A maps, we obtain different unstable manifolds.
We solve this problem by considering the map $(z^4+\varepsilon w^2, w^4)$
and then also show that, by perturbing $(z^2+c, w^2)$, one can get also maps
$f_\varepsilon$ which are injective on $\Lambda_\varepsilon$, their corresponding basic
sets, hence the cardinality of the set $(f_\varepsilon|_{\Lambda_\varepsilon})^{-1}(x), x
\in \Lambda_\varepsilon$, is not stable under perturbation.
Mathematics Subject Classification: 37D20, 37F45.
\begin{equation} \\ \end{equation}
-
Access History
-