\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Attractors for nonautonomous and random dynamical systems perturbed by impulses

Abstract Related Papers Cited by
  • Nonautonomous and random dynamical systems perturbed by impulses are considered. The impulses form a flow. Over this flow the perturbed system also has the structure of a new nonautonomous/random dynamical system. The long time behavior of this system is considered. In particular the existence of an attractor is proven. The result can be applied to a large class of dissipative systems given by partial or ordinary differential equations. As an example of this class of problems the Lorenz system is studied. For another problem given by a one-dimensional affine differential equation and perturbed by affine impulses, the attractor can be calculated explicitly.
    Mathematics Subject Classification: 37B55, 34B40, 34A37, 37H99.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(243) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return