-
Previous Article
Uniform exponential attractors for a singularly perturbed damped wave equation
- DCDS Home
- This Issue
-
Next Article
Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle
Complex Neumann type boundary problem and decomposition of Lebesgue spaces
1. | Moscow Power Engineering Institute, Moscow, Russian Federation |
[1] |
Chuanqiang Chen, Li Chen, Xinqun Mei, Ni Xiang. The Neumann problem for a class of mixed complex Hessian equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022049 |
[2] |
Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607 |
[3] |
Markus Banagl. Singular spaces and generalized Poincaré complexes. Electronic Research Announcements, 2009, 16: 63-73. doi: 10.3934/era.2009.16.63 |
[4] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[5] |
Ferdinand Verhulst. Henri Poincaré's neglected ideas. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1411-1427. doi: 10.3934/dcdss.2020079 |
[6] |
Alexander Moreto. Complex group algebras of finite groups: Brauer's Problem 1. Electronic Research Announcements, 2005, 11: 34-39. |
[7] |
Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601 |
[8] |
Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011 |
[9] |
Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228 |
[10] |
Jie Jiang. Global stability of Keller–Segel systems in critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 609-634. doi: 10.3934/dcds.2020025 |
[11] |
Carlo Bardaro, Ilaria Mantellini. Boundedness properties of semi-discrete sampling operators in Mellin–Lebesgue spaces. Mathematical Foundations of Computing, 2022, 5 (3) : 219-229. doi: 10.3934/mfc.2021031 |
[12] |
Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119 |
[13] |
S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279 |
[14] |
Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103 |
[15] |
Francis Akutsah, Akindele Adebayo Mebawondu, Hammed Anuoluwapo Abass, Ojen Kumar Narain. A self adaptive method for solving a class of bilevel variational inequalities with split variational inequality and composed fixed point problem constraints in Hilbert spaces. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021046 |
[16] |
Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537 |
[17] |
Shengliang Pan, Deyan Zhang, Zhongjun Chao. A generalization of the Blaschke-Lebesgue problem to a kind of convex domains. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1587-1601. doi: 10.3934/dcdsb.2016012 |
[18] |
Giuseppe Geymonat, Françoise Krasucki. Hodge decomposition for symmetric matrix fields and the elasticity complex in Lipschitz domains. Communications on Pure and Applied Analysis, 2009, 8 (1) : 295-309. doi: 10.3934/cpaa.2009.8.295 |
[19] |
Neal Bez, Sanghyuk Lee, Shohei Nakamura, Yoshihiro Sawano. Sharpness of the Brascamp–Lieb inequality in Lorentz spaces. Electronic Research Announcements, 2017, 24: 53-63. doi: 10.3934/era.2017.24.006 |
[20] |
Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 213-227. doi: 10.3934/dcdss.2021015 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]