February  2004, 10(1&2): 337-348. doi: 10.3934/dcds.2004.10.337

Longtime behavior of a viscoelastic Timoshenko beam

1. 

Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, I-20133 Milano, Italy

2. 

Dipartimento di Matematica "F. Brioschi", Politecnico di Milano, Italy, Italy

Received  January 2002 Revised  February 2003 Published  October 2003

We consider a Timoshenko model of a viscoelastic beam fixed at the endpoints and subject to nonlinear external forces. The model consists of two coupled second order linear integrodifferential hyperbolic equations that govern the evolution of the lateral displacement $u$ and the total rotation angle $\phi$. We prove that these equations generate a dissipative dynamical system, whose trajectories are eventually confined in a uniform absorbing set, the dissipativity being due to the memory mechanism solely. This fact allows us to state the existence of a uniform compact attractor.
Citation: M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337
[1]

Jeongho Ahn, David E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 1-22. doi: 10.3934/dcdsb.2009.12.1

[2]

Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control and Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004

[3]

Marcelo Bongarti, Irena Lasiecka, José H. Rodrigues. Boundary stabilization of the linear MGT equation with partially absorbing boundary data and degenerate viscoelasticity. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1355-1376. doi: 10.3934/dcdss.2022020

[4]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[5]

Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021003

[6]

Bruce Geist and Joyce R. McLaughlin. Eigenvalue formulas for the uniform Timoshenko beam: the free-free problem. Electronic Research Announcements, 1998, 4: 12-17.

[7]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[8]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[9]

T. F. Ma, M. L. Pelicer. Attractors for weakly damped beam equations with $p$-Laplacian. Conference Publications, 2013, 2013 (special) : 525-534. doi: 10.3934/proc.2013.2013.525

[10]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[11]

Juan Casado-Díaz, Manuel Luna-Laynez, Francois Murat. The behavior of a beam fixed on small sets of one of its extremities. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4039-4070. doi: 10.3934/dcds.2014.34.4039

[12]

Takayuki Niimura. Attractors and their stability with respect to rotational inertia for nonlocal extensible beam equations. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2561-2591. doi: 10.3934/dcds.2020141

[13]

Yue Sun, Zhijian Yang. Strong attractors and their robustness for an extensible beam model with energy damping. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3101-3129. doi: 10.3934/dcdsb.2021175

[14]

A. M. López. Finiteness and existence of attractors and repellers on sectional hyperbolic sets. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 337-354. doi: 10.3934/dcds.2017014

[15]

Yanan Li, Zhijian Yang, Fang Da. Robust attractors for a perturbed non-autonomous extensible beam equation with nonlinear nonlocal damping. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5975-6000. doi: 10.3934/dcds.2019261

[16]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[17]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[18]

Leticia Pardo-Simón. Criniferous entire maps with absorbing Cantor bouquets. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 989-1010. doi: 10.3934/dcds.2021144

[19]

Donatella Donatelli, Corrado Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Communications on Pure and Applied Analysis, 2009, 8 (2) : 645-654. doi: 10.3934/cpaa.2009.8.645

[20]

Monica Conti, V. Pata. Weakly dissipative semilinear equations of viscoelasticity. Communications on Pure and Applied Analysis, 2005, 4 (4) : 705-720. doi: 10.3934/cpaa.2005.4.705

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]