# American Institute of Mathematical Sciences

February  2004, 10(1&2): 459-472. doi: 10.3934/dcds.2004.10.459

## Boundary layer separation and structural bifurcation for 2-D incompressible fluid flows

 1 Department of Mathematics, Sichuan University, Chengdu 2 Department of Mathematics, Indiana University, Bloomington, IN 47405

Received  March 2003 Revised  August 2003 Published  October 2003

The main objective of this article and the previous articles [2, 3, 7] is to provide a rigorous characterization of the boundary layer separation of 2-D incompressible viscous fluids. First we establish a simple equation linking the separation location and time with the Reynolds number, the external forcing the boundary curvature, and the initial velocity field. Second, we show that external forcing with reverse orientation to the initial velocity field leads to structural bifurcation at a degenerate singular point with integer index of the velocity field at the critical bifurcation time. Necessary and sufficient kinematic conditions are given to identify the case for boundary layer separation.
Citation: Tian Ma, Shouhong Wang. Boundary layer separation and structural bifurcation for 2-D incompressible fluid flows. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 459-472. doi: 10.3934/dcds.2004.10.459
 [1] Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 [2] Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113 [3] Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355 [4] Teng Wang, Yi Wang. Large-time behaviors of the solution to 3D compressible Navier-Stokes equations in half space with Navier boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2811-2838. doi: 10.3934/cpaa.2021080 [5] Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193 [6] Quan Wang, Hong Luo, Tian Ma. Boundary layer separation of 2-D incompressible Dirichlet flows. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 675-682. doi: 10.3934/dcdsb.2015.20.675 [7] Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673 [8] Quanrong Li, Shijin Ding. Global well-posedness of the Navier-Stokes equations with Navier-slip boundary conditions in a strip domain. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3561-3581. doi: 10.3934/cpaa.2021121 [9] Alessio Falocchi, Filippo Gazzola. Regularity for the 3D evolution Navier-Stokes equations under Navier boundary conditions in some Lipschitz domains. Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1185-1200. doi: 10.3934/dcds.2021151 [10] Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 [11] Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219 [12] Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277 [13] Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141 [14] Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199 [15] Hongjie Dong, Kunrui Wang. Interior and boundary regularity for the Navier-Stokes equations in the critical Lebesgue spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5289-5323. doi: 10.3934/dcds.2020228 [16] Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595 [17] Hantaek Bae. Solvability of the free boundary value problem of the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 769-801. doi: 10.3934/dcds.2011.29.769 [18] Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997 [19] Laurence Cherfils, Madalina Petcu. On the viscous Cahn-Hilliard-Navier-Stokes equations with dynamic boundary conditions. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1419-1449. doi: 10.3934/cpaa.2016.15.1419 [20] Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602

2021 Impact Factor: 1.588