# American Institute of Mathematical Sciences

February  2004, 10(1&2): 557-580. doi: 10.3934/dcds.2004.10.557

## Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation

 1 Analyse Numérique et EDP, CNRS, Université de Paris Sud, F-91405 Orsay, Cedex, France 2 Mathematical Institute, PB 9512, 2300 RA, Leiden, Netherlands, Netherlands 3 School of Mathematical Sciences, Tel Aviv University, Israel

Received  November 2001 Revised  September 2003 Published  October 2003

We consider a nonlinear fourth order parabolic equation with a nonlocal term which describes the time evolution of a flame front. After having established the existence of a global attractor for a corresponding boundary value problem, we prove the existence of inertial sets.
Citation: D. Hilhorst, L. A. Peletier, A. I. Rotariu, G. Sivashinsky. Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 557-580. doi: 10.3934/dcds.2004.10.557
 [1] L. Dieci, M. S Jolly, Ricardo Rosa, E. S. Van Vleck. Error in approximation of Lyapunov exponents on inertial manifolds: The Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 555-580. doi: 10.3934/dcdsb.2008.9.555 [2] Peng Gao. Global exact controllability to the trajectories of the Kuramoto-Sivashinsky equation. Evolution Equations and Control Theory, 2020, 9 (1) : 181-191. doi: 10.3934/eect.2020002 [3] Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225 [4] Fred C. Pinto. Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 117-136. doi: 10.3934/dcds.1999.5.117 [5] Aslihan Demirkaya. The existence of a global attractor for a Kuramoto-Sivashinsky type equation in 2D. Conference Publications, 2009, 2009 (Special) : 198-207. doi: 10.3934/proc.2009.2009.198 [6] Milena Stanislavova, Atanas Stefanov. Effective estimates of the higher Sobolev norms for the Kuramoto-Sivashinsky equation. Conference Publications, 2009, 2009 (Special) : 729-738. doi: 10.3934/proc.2009.2009.729 [7] Jared C. Bronski, Razvan C. Fetecau, Thomas N. Gambill. A note on a non-local Kuramoto-Sivashinsky equation. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 701-707. doi: 10.3934/dcds.2007.18.701 [8] Peng Gao. Averaging principle for stochastic Kuramoto-Sivashinsky equation with a fast oscillation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5649-5684. doi: 10.3934/dcds.2018247 [9] Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91 [10] Piotr Zgliczyński. Steady state bifurcations for the Kuramoto-Sivashinsky equation: A computer assisted proof. Journal of Computational Dynamics, 2015, 2 (1) : 95-142. doi: 10.3934/jcd.2015.2.95 [11] Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933 [12] Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1471-1496. doi: 10.3934/dcdsb.2021098 [13] Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 [14] Peng Gao. Null controllability with constraints on the state for the 1-D Kuramoto-Sivashinsky equation. Evolution Equations and Control Theory, 2015, 4 (3) : 281-296. doi: 10.3934/eect.2015.4.281 [15] David Massatt. On the well-posedness of the anisotropically-reduced two-dimensional Kuramoto-Sivashinsky Equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021305 [16] David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96 [17] Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120 [18] Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043 [19] Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587 [20] Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

2020 Impact Factor: 1.392