Let $T$ be a transformation from $I=[0,1)$ onto itself and
let $Q_n(x)$ be the subinterval $[i/2^n,(i+1)/2^n)$, $0 \leq i < 2^n$
containing $x$.
Define $K_n (x) =$min{$j\geq 1:T^j (x)\in Q_n(x)$} and
$K_n(x,y) =$min{$j\geq 1:T^{j-1} (y) \in Q_n(x)$}.
For various transformations defined on $I$, we show that