-
Previous Article
Stability of solitary waves for a nonlinearly dispersive equation
- DCDS Home
- This Issue
-
Next Article
Nonplanar and noncollision periodic solutions for $N$-body problems
Chaotic behavior of rapidly oscillating Lagrangian systems
1. | Dipartimento di Matematica, Università di Torino, Italy |
2. | Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università di Napoli, Italy |
3. | Dipartimento di Scienze Matematiche, Università Politecnica delle Marche, Italy |
$ \ddot{q} = \alpha(\omega t) V'(q), \quad t \in \mathbb R, q \in \mathbb R^N,$ $\qquad\qquad (L_\omega)$
has, for some classes of functions $\alpha$, a chaotic
behavior---more precisely the system has multi-bump
solutions---for all $\omega$ large. These classes of functions
include some quasi-periodic and some limit-periodic ones, but not
any periodic function.
We prove the result using global variational methods.
[1] |
Paolo Perfetti. Hamiltonian equations on $\mathbb{T}^\infty$ and almost-periodic solutions. Conference Publications, 2001, 2001 (Special) : 303-309. doi: 10.3934/proc.2001.2001.303 |
[2] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[3] |
Wen Si, Fenfen Wang, Jianguo Si. Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method. Communications on Pure and Applied Analysis, 2020, 19 (1) : 541-585. doi: 10.3934/cpaa.2020027 |
[4] |
Karsten Matthies. Exponentially small splitting of homoclinic orbits of parabolic differential equations under periodic forcing. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 585-602. doi: 10.3934/dcds.2003.9.585 |
[5] |
Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703 |
[6] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6425-6462. doi: 10.3934/dcdsb.2021026 |
[7] |
Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579 |
[8] |
Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857 |
[9] |
Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025 |
[10] |
Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control and Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101 |
[11] |
Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51 |
[12] |
Amadeu Delshams, Vassili Gelfreich, Angel Jorba and Tere M. Seara. Lower and upper bounds for the splitting of separatrices of the pendulum under a fast quasiperiodic forcing. Electronic Research Announcements, 1997, 3: 1-10. |
[13] |
Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068 |
[14] |
Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301 |
[15] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[16] |
Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104 |
[17] |
Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113 |
[18] |
Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157 |
[19] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[20] |
Alexei Pokrovskii, Oleg Rasskazov, Daniela Visetti. Homoclinic trajectories and chaotic behaviour in a piecewise linear oscillator. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 943-970. doi: 10.3934/dcdsb.2007.8.943 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]