January  2004, 11(1): 113-130. doi: 10.3934/dcds.2004.11.113

Global in time weak solutions for compressible barotropic self-gravitating fluids

1. 

Département de physique théorique et appliquée, CEA, B.P. 12, Bruyères-le-Châtel, France

2. 

Mathematical Institute AV ČR, Žitná 25, 115 67 Praha 1, Czech Republic, Czech Republic

Received  December 2002 Revised  September 2003 Published  April 2004

The existence of global in time weak solutions to the Navier-Stokes-Poisson system of barotropic compressible flow is proved. The system takes into account the effect of self-gravitation. Moreover, the case of a non-monotone pressure important in certain applications in astrophysics and the theory of nuclear fluids is included.
Citation: Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113
[1]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic and Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[2]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure and Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[3]

René Pinnau, Oliver Tse. On a regularized system of self-gravitating particles. Kinetic and Related Models, 2014, 7 (3) : 591-604. doi: 10.3934/krm.2014.7.591

[4]

Yulan Xu, Yanping Dou. Large BV solutions to Euler equations in the isothermal self-gravitating gases with damping. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1451-1467. doi: 10.3934/cpaa.2009.8.1451

[5]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[6]

Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013

[7]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[8]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[9]

Guochun Wu, Han Wang, Yinghui Zhang. Optimal time-decay rates of the compressible Navier–Stokes–Poisson system in $ \mathbb R^3 $. Electronic Research Archive, 2021, 29 (6) : 3889-3908. doi: 10.3934/era.2021067

[10]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[11]

Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985

[12]

Yulan Wang. Global solvability in a two-dimensional self-consistent chemotaxis-Navier-Stokes system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 329-349. doi: 10.3934/dcdss.2020019

[13]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[14]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611

[15]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[16]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[17]

Zoran Grujić. Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 837-843. doi: 10.3934/dcds.2006.14.837

[18]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4823-4846. doi: 10.3934/dcds.2021059

[19]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[20]

Yuan Xu, Fujun Zhou, Weihua Gong. Global Well-posedness and Optimal Decay Rate of the Quasi-static Incompressible Navier–Stokes–Fourier–Maxwell–Poisson System. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1537-1565. doi: 10.3934/cpaa.2022028

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (162)
  • HTML views (0)
  • Cited by (51)

[Back to Top]