January  2004, 11(1): 131-160. doi: 10.3934/dcds.2004.11.131

Boundary layer and long time stability for multi-D viscous shocks

1. 

LATP, Univ. Aix-Marseille 1, 39 rue F. Joliot-Curie, 13453 Marseille cedex 13, France

2. 

MAB, Université Bordeaux I, 351 Cours de la Libération, 33405 Talence Cedex, France

3. 

Department of Mathematics, CB 3250, UNC Chapel Hill, NC 27599, United States

4. 

Mathematics Department, Indiana University, Bloomington, IN 47405

Received  December 2002 Revised  November 2003 Published  April 2004

This is an expository paper whose goal is to provide a detailed survey without the full technicalities of the methods used recently in [GMWZ1, GMWZ2] to prove the existence of curved multi-D viscous shocks, to rigorously justify the small viscosity limit, and to prove long time stability of multidimensional planar viscous shocks.
Citation: O. Guès, G. Métivier, M. Williams, K. Zumbrun. Boundary layer and long time stability for multi-D viscous shocks. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 131-160. doi: 10.3934/dcds.2004.11.131
[1]

G. Métivier, K. Zumbrun. Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 205-220. doi: 10.3934/dcds.2004.11.205

[2]

Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615

[3]

Hugo Beirão da Veiga. Elliptic boundary value problems in spaces of continuous functions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 43-52. doi: 10.3934/dcdss.2016.9.43

[4]

Laurence Halpern, Jeffrey Rauch. Hyperbolic boundary value problems with trihedral corners. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4403-4450. doi: 10.3934/dcds.2016.36.4403

[5]

G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377-384. doi: 10.3934/proc.2009.2009.377

[6]

John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283-290. doi: 10.3934/proc.2013.2013.283

[7]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[8]

Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1347-1363. doi: 10.3934/dcds.2011.31.1347

[9]

Shiping Cao, Hua Qiu. Boundary value problems for harmonic functions on domains in Sierpinski gaskets. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1147-1179. doi: 10.3934/cpaa.2020054

[10]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations and Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[11]

Aimin Huang, Roger Temam. The linear hyperbolic initial and boundary value problems in a domain with corners. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1627-1665. doi: 10.3934/dcdsb.2014.19.1627

[12]

J. R. L. Webb. Remarks on positive solutions of some three point boundary value problems. Conference Publications, 2003, 2003 (Special) : 905-915. doi: 10.3934/proc.2003.2003.905

[13]

K. Q. Lan. Multiple positive eigenvalues of conjugate boundary value problems with singularities. Conference Publications, 2003, 2003 (Special) : 501-506. doi: 10.3934/proc.2003.2003.501

[14]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[15]

Wenying Feng. Solutions and positive solutions for some three-point boundary value problems. Conference Publications, 2003, 2003 (Special) : 263-272. doi: 10.3934/proc.2003.2003.263

[16]

Nicola Abatangelo, Sven Jarohs, Alberto Saldaña. Positive powers of the Laplacian: From hypersingular integrals to boundary value problems. Communications on Pure and Applied Analysis, 2018, 17 (3) : 899-922. doi: 10.3934/cpaa.2018045

[17]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[18]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[19]

V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191

[20]

Mark I. Vishik, Sergey Zelik. Attractors for the nonlinear elliptic boundary value problems and their parabolic singular limit. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2059-2093. doi: 10.3934/cpaa.2014.13.2059

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]