-
Previous Article
Expanding interval maps with intermittent behaviour, physical measures and time scales
- DCDS Home
- This Issue
-
Next Article
Recurrent dimensions of quasi-periodic solutions for nonlinear evolution equations II: Gaps of dimensions and Diophantine conditions
Polynomial growth of the derivative for diffeomorphisms on tori
1. | Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland |
$\mathbb T^3\quad (x_1,x_2,x_3)\mapsto (x_1+\alpha,\varepsilon x_2+\beta(x_1),x_3+\gamma(x_1,x_2))\in\mathbb T^3,
where $\varepsilon =\pm 1$. We also indicate why there is no $4$-dimensional analogue of the above result. Random diffeomorphisms on the $2$-torus are studied as well.
[1] |
Denis Gaidashev, Tomas Johnson. Spectral properties of renormalization for area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3651-3675. doi: 10.3934/dcds.2016.36.3651 |
[2] |
Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007 |
[3] |
Masoumeh Gharaei, Ale Jan Homburg. Random interval diffeomorphisms. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 241-272. doi: 10.3934/dcdss.2017012 |
[4] |
Hans Koch. On hyperbolicity in the renormalization of near-critical area-preserving maps. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7029-7056. doi: 10.3934/dcds.2016106 |
[5] |
Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231 |
[6] |
Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123. |
[7] |
Vadim Kaloshin, Maria Saprykina. Generic 3-dimensional volume-preserving diffeomorphisms with superexponential growth of number of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 611-640. doi: 10.3934/dcds.2006.15.611 |
[8] |
Ely Kerman. On primes and period growth for Hamiltonian diffeomorphisms. Journal of Modern Dynamics, 2012, 6 (1) : 41-58. doi: 10.3934/jmd.2012.6.41 |
[9] |
Denis Gaidashev, Tomas Johnson. Dynamics of the universal area-preserving map associated with period-doubling: Stable sets. Journal of Modern Dynamics, 2009, 3 (4) : 555-587. doi: 10.3934/jmd.2009.3.555 |
[10] |
Lev Buhovski, Roman Muraviev. Growth gap versus smoothness for diffeomorphisms of the interval. Journal of Modern Dynamics, 2008, 2 (4) : 629-643. doi: 10.3934/jmd.2008.2.629 |
[11] |
Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61 |
[12] |
João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837 |
[13] |
Yujun Zhu. Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 869-882. doi: 10.3934/dcds.2014.34.869 |
[14] |
Radu Saghin. Volume growth and entropy for $C^1$ partially hyperbolic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3789-3801. doi: 10.3934/dcds.2014.34.3789 |
[15] |
Roland Gunesch, Philipp Kunde. Weakly mixing diffeomorphisms preserving a measurable Riemannian metric with prescribed Liouville rotation behavior. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1615-1655. doi: 10.3934/dcds.2018067 |
[16] |
Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581 |
[17] |
Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281 |
[18] |
Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615 |
[19] |
Baolin He. Entropy of diffeomorphisms of line. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204 |
[20] |
Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]