March  2004, 11(2&3): 699-714. doi: 10.3934/dcds.2004.11.699

Null controllability of a cascade system of parabolic-hyperbolic equations

1. 

Dpto., E.D.A.N., Universidad de Sevilla, Aptdo. 1180; 41080 Sevilla, Spain

2. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico

Received  December 2002 Revised  February 2004 Published  June 2004

This paper is concerned with the null controllability of a cascade linear system formed by a heat and a wave equation in a cylinder $\Omega \times (0,T)$. The control acts only on the heat equation and is supported by a set of the form $\omega \times (0,T)$, where $\omega \subset \Omega$. In the wave equation, only the restriction of the solution to the heat equation to another set $\mathcal O \times (0,T)$ appears. In the main result in this paper, we show that, under appropriate assumptions on $T$, $\omega$ and $\mathcal O$, the system is null controllable.
Citation: Enrique Fernández-Cara, Luz de Teresa. Null controllability of a cascade system of parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 699-714. doi: 10.3934/dcds.2004.11.699
[1]

Enrique Fernández-Cara, Manuel González-Burgos, Luz de Teresa. Null-exact controllability of a semilinear cascade system of parabolic-hyperbolic equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 639-658. doi: 10.3934/cpaa.2006.5.639

[2]

Brahim Allal, Abdelkarim Hajjaj, Lahcen Maniar, Jawad Salhi. Null controllability for singular cascade systems of $ n $-coupled degenerate parabolic equations by one control force. Evolution Equations & Control Theory, 2021, 10 (3) : 545-573. doi: 10.3934/eect.2020080

[3]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[4]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[5]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[6]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2020, 10 (1) : 89-112. doi: 10.3934/mcrf.2019031

[7]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[8]

Debayan Maity. On the null controllability of the Lotka-Mckendrick system. Mathematical Control & Related Fields, 2019, 9 (4) : 719-728. doi: 10.3934/mcrf.2019048

[9]

J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136

[10]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[11]

André da Rocha Lopes, Juan Límaco. Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021024

[12]

Lin Yan, Bin Wu. Null controllability for a class of stochastic singular parabolic equations with the convection term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021182

[13]

Irina F. Sivergina, Michael P. Polis. About global null controllability of a quasi-static thermoelastic contact system. Conference Publications, 2005, 2005 (Special) : 816-823. doi: 10.3934/proc.2005.2005.816

[14]

Nicolas Hegoburu, Marius Tucsnak. Null controllability of the Lotka-McKendrick system with spatial diffusion. Mathematical Control & Related Fields, 2018, 8 (3&4) : 707-720. doi: 10.3934/mcrf.2018030

[15]

Jon Asier Bárcena-Petisco, Kévin Le Balc'h. Local null controllability of the penalized Boussinesq system with a reduced number of controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021038

[16]

Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021036

[17]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[18]

Larbi Berrahmoune. Null controllability for distributed systems with time-varying constraint and applications to parabolic-like equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3275-3303. doi: 10.3934/dcdsb.2020062

[19]

Damien Allonsius, Franck Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-dimensional geometries. Mathematical Control & Related Fields, 2020, 10 (2) : 217-256. doi: 10.3934/mcrf.2019037

[20]

Lianwen Wang. Approximate controllability and approximate null controllability of semilinear systems. Communications on Pure & Applied Analysis, 2006, 5 (4) : 953-962. doi: 10.3934/cpaa.2006.5.953

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (118)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]