March  2004, 11(2&3): 731-743. doi: 10.3934/dcds.2004.11.731

Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains

1. 

Department of Mathematics, University of Ulsan, Ulsan 680-749, South Korea

2. 

Graduate School of Mathematics, Kyushu University, Fukuoka 810-8560, Japan

Received  January 2003 Revised  March 2004 Published  June 2004

We prove the existence of global solutions to the initial-boundary value problem for the Kirchhoff type quasilinear wave equations in exterior domains with a localized weakly nonlinear dissipation.
Citation: Jeong Ja Bae, Mitsuhiro Nakao. Existence problem for the Kirchhoff type wave equation with a localized weakly nonlinear dissipation in exterior domains. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 731-743. doi: 10.3934/dcds.2004.11.731
[1]

Zhi-Guo Wu, Wen Guan, Da-Bin Wang. Multiple localized nodal solutions of high topological type for Kirchhoff-type equation with double potentials. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2495-2528. doi: 10.3934/cpaa.2022058

[2]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[3]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control and Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[4]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1857-1871. doi: 10.3934/cpaa.2021043

[5]

Peng Chen, Xiaochun Liu. Positive solutions for Choquard equation in exterior domains. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2237-2256. doi: 10.3934/cpaa.2021065

[6]

Igor Chueshov, Irena Lasiecka, Daniel Toundykov. Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 459-509. doi: 10.3934/dcds.2008.20.459

[7]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[8]

Moez Daoulatli, Irena Lasiecka, Daniel Toundykov. Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Discrete and Continuous Dynamical Systems - S, 2009, 2 (1) : 67-94. doi: 10.3934/dcdss.2009.2.67

[9]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[10]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[11]

Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 919-934. doi: 10.3934/dcds.2010.27.919

[12]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation. Mathematical Control and Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[13]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

[14]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[15]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[16]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[17]

Hongxia Zhang, Ying Wang. Liouville results for fully nonlinear integral elliptic equations in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (1) : 85-112. doi: 10.3934/cpaa.2018006

[18]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[19]

Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445

[20]

Vando Narciso. On a Kirchhoff wave model with nonlocal nonlinear damping. Evolution Equations and Control Theory, 2020, 9 (2) : 487-508. doi: 10.3934/eect.2020021

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]