February  2005, 12(2): 347-354. doi: 10.3934/dcds.2005.12.347

Qualitative properties of solutions for an integral equation

1. 

Department of Mathematics, Yeshiva University, 500 W 185th Street, New York, NY 10033, United States

2. 

Department of Applied Mathematics, University of Colorado at Boulder

3. 

Department of Mathematics, University of Toledo, Toledo OH 43606

Received  August 2003 Revised  June 2004 Published  December 2004

Let $n$ be a positive integer and let $ 0 < \alpha < n.$ In this paper, we study more general integral equation

$ u(x) = \int_{R^n} \frac{1}{|x-y|^{n-\alpha}} K(y) u(y)^p dy.

We establish regularity, radial symmetry, and monotonicity of the solutions. We also consider subcritical cases, super critical cases, and singular solutions in all cases; and obtain qualitative properties for these solutions.

Citation: Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347
[1]

Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022

[2]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[3]

Alfonso Castro, Shu-Zhi Song. Infinitely many radial solutions for a super-cubic Kirchhoff type problem in a ball. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3347-3355. doi: 10.3934/dcdss.2020127

[4]

Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154

[5]

Meng Qu, Ping Li, Liu Yang. Symmetry and monotonicity of solutions for the fully nonlinear nonlocal equation. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1337-1349. doi: 10.3934/cpaa.2020065

[6]

Zhenjie Li, Chunqin Zhou. Radial symmetry of nonnegative solutions for nonlinear integral systems. Communications on Pure and Applied Analysis, 2022, 21 (3) : 837-844. doi: 10.3934/cpaa.2021201

[7]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[8]

Xueying Chen, Guanfeng Li, Sijia Bao. Symmetry and monotonicity of positive solutions for a class of general pseudo-relativistic systems. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1755-1772. doi: 10.3934/cpaa.2022045

[9]

Ryan Hynd, Francis Seuffert. On the symmetry and monotonicity of Morrey extremals. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5285-5303. doi: 10.3934/cpaa.2020238

[10]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure and Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[11]

Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41

[12]

Nguyen Lam, Guozhen Lu. Existence of nontrivial solutions to Polyharmonic equations with subcritical and critical exponential growth. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2187-2205. doi: 10.3934/dcds.2012.32.2187

[13]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[14]

Phuong Le, Hoang-Hung Vo. Monotonicity and symmetry of positive solutions to degenerate quasilinear elliptic systems in half-spaces and strips. Communications on Pure and Applied Analysis, 2022, 21 (3) : 1027-1048. doi: 10.3934/cpaa.2022008

[15]

Cristina Tarsi. Perturbation from symmetry and multiplicity of solutions for elliptic problems with subcritical exponential growth in $\mathbb{R} ^2$. Communications on Pure and Applied Analysis, 2008, 7 (2) : 445-456. doi: 10.3934/cpaa.2008.7.445

[16]

Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure and Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871

[17]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[18]

Yinbin Deng, Shuangjie Peng, Li Wang. Infinitely many radial solutions to elliptic systems involving critical exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 461-475. doi: 10.3934/dcds.2014.34.461

[19]

Patrick Martinez, Jean-Michel Roquejoffre. The rate of attraction of super-critical waves in a Fisher-KPP type model with shear flow. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2445-2472. doi: 10.3934/cpaa.2012.11.2445

[20]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (129)
  • HTML views (0)
  • Cited by (89)

Other articles
by authors

[Back to Top]