April  2005, 12(3): 413-424. doi: 10.3934/dcds.2005.12.413

Invariant criteria for existence of bounded positive solutions

1. 

Département de Mathématiques, Université de Cergy-Pontoise, Site Saint-Martin, BP 222, 95302 Cergy-Pontoise Cedex, France

2. 

Department of Mathematics, East China Normal University, Shanghai 200062, China

Received  September 2003 Revised  July 2004 Published  December 2004

We consider semilinear elliptic equations $\Delta u \pm \rho(x)f(u) = 0$, or more generally $\Delta u + \varphi(x, u) = 0$, posed in $\R^N$ ($N\geq 3$). We prove that the existence of entire bounded positive solutions is closely related to the existence of bounded solution for $\Delta u + \rho(x) = 0$ in $\mathbb R^N$. Many sufficient conditions which are invariant under the isometry group of $\mathbb R^N$ are established. Our proofs use the standard barrier method, but our results extend many earlier works in this direction. Our ideas can also be applied for the existence of large solutions, for the exterior domain problem and for the system situations.
Citation: Dong Ye, Feng Zhou. Invariant criteria for existence of bounded positive solutions. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 413-424. doi: 10.3934/dcds.2005.12.413
[1]

Nikolai Dokuchaev. Degenerate backward SPDEs in bounded domains and applications to barrier options. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5317-5334. doi: 10.3934/dcds.2015.35.5317

[2]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[3]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[4]

Guoqiang Wang, Zhongchen Wu, Zhongtuan Zheng, Xinzhong Cai. Complexity analysis of primal-dual interior-point methods for semidefinite optimization based on a parametric kernel function with a trigonometric barrier term. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 101-113. doi: 10.3934/naco.2015.5.101

[5]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[6]

Jishan Fan, Kun Zhao. Improved extensibility criteria and global well-posedness of a coupled chemotaxis-fluid model on bounded domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3949-3967. doi: 10.3934/dcdsb.2018119

[7]

Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012

[8]

Isabeau Birindelli, Enrico Valdinoci. On the Allen-Cahn equation in the Grushin plane: A monotone entire solution that is not one-dimensional. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 823-838. doi: 10.3934/dcds.2011.29.823

[9]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[10]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[11]

Diogo A. Gomes. Viscosity solution methods and the discrete Aubry-Mather problem. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 103-116. doi: 10.3934/dcds.2005.13.103

[12]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440

[14]

Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems & Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028

[15]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[16]

Shuhua Zhang, Zhuo Yang, Song Wang. Design of green bonds by double-barrier options. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1867-1882. doi: 10.3934/dcdss.2020110

[17]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[18]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[19]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems & Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[20]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]