April  2005, 12(3): 531-554. doi: 10.3934/dcds.2005.12.531

Describing a class of global attractors via symbol sequences

1. 

Institut für Mathematik I, Freie Universität Berlin, Arnimallee 2-6, 14195 Berlin, Germany

2. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

Received  May 2003 Revised  October 2004 Published  December 2004

We study a singularly perturbed scalar reaction-diffusion equation on a bounded interval with a spatially inhomogeneous bistable nonlinearity. For certain nonlinearities, which are piecewise constant in space on $k$ subintervals, it is possible to characterize all stationary solutions for small $\varepsilon$ by means of sequences of $k$ symbols, indicating the behavior of the solution in each subinterval. Determining also Morse indices and zero numbers of the equilibria in terms of the symbol sequences, we are able to give a criterion for heteroclinic connections and a description of the associated global attractor for all $k$.
Citation: Jörg Härterich, Matthias Wolfrum. Describing a class of global attractors via symbol sequences. Discrete & Continuous Dynamical Systems, 2005, 12 (3) : 531-554. doi: 10.3934/dcds.2005.12.531
[1]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks & Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[2]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks & Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345

[4]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[5]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[6]

Giovanna Bonfanti, Fabio Luterotti. Global solution to a phase transition model with microscopic movements and accelerations in one space dimension. Communications on Pure & Applied Analysis, 2006, 5 (4) : 763-777. doi: 10.3934/cpaa.2006.5.763

[7]

Marina Ghisi, Massimo Gobbino. Hyperbolic--parabolic singular perturbation for mildly degenerate Kirchhoff equations: Global-in-time error estimates. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1313-1332. doi: 10.3934/cpaa.2009.8.1313

[8]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[9]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[10]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[11]

Shin-Ichiro Ei, Hiroshi Matsuzawa. The motion of a transition layer for a bistable reaction diffusion equation with heterogeneous environment. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 901-921. doi: 10.3934/dcds.2010.26.901

[12]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[13]

Chunqing Lu. Existence and uniqueness of single spike solution of the carrier-pearson problem. Conference Publications, 2001, 2001 (Special) : 259-264. doi: 10.3934/proc.2001.2001.259

[14]

Jaeyoung Byeon, Sang-hyuck Moon. Spike layer solutions for a singularly perturbed Neumann problem: Variational construction without a nondegeneracy. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1921-1965. doi: 10.3934/cpaa.2019089

[15]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[16]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[17]

Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971

[18]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[19]

Peter Giesl. Converse theorem on a global contraction metric for a periodic orbit. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 5339-5363. doi: 10.3934/dcds.2019218

[20]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]