July  2005, 12(4): 629-638. doi: 10.3934/dcds.2005.12.629

Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds

1. 

Faculty of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima 739-8521, Japan

2. 

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan

Received  September 2003 Revised  December 2004 Published  January 2005

A nonsingular flow $\varphi_t$ on a $3$-manifold induces a flow on the plane bundle orthogonal to $\varphi_t$ by the derivative. This flow also induces a flow $\psi_t$ on its projectivized bundle $PX$, which is called the projective flow. In this paper, we will investigate this projective flow in order to understand the original flow $\varphi_t$, in particular, under the condition that $\varphi_t$ is minimal and $\psi_t$ has more than one minimal sets: If the projective flow $\psi_t$ has more than two minimal sets, then we will show that $\varphi_t$ is topologically equivalent to an irrational flow on the $3$-torus. In the case when $\psi_t$ has exactly two minimal sets, then we obtain several properties of the minimal sets of $\psi_t$. In particular, we construct two $C^\infty$ sections to $PX$ which separate these minimal sets (and hence $PX$ is a trivial bundle) if $\varphi_t$ is not topologically equivalent to an irrational flow on the $3$-torus. As an application of this characterization, the chain recurrent set of the projective flow is shown to be the whole $PX$.
Citation: Hiromichi Nakayama, Takeo Noda. Minimal sets and chain recurrent sets of projective flows induced from minimal flows on $3$-manifolds. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 629-638. doi: 10.3934/dcds.2005.12.629
[1]

Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493

[2]

Jiří Minarčík, Michal Beneš. Minimal surface generating flow for space curves of non-vanishing torsion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022011

[3]

Tiago Carvalho, Luiz Fernando Gonçalves. A flow on $ S^2 $ presenting the ball as its minimal set. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4263-4280. doi: 10.3934/dcdsb.2020287

[4]

Daniele Bartoli, Lins Denaux. Minimal codewords arising from the incidence of points and hyperplanes in projective spaces. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021061

[5]

Radu C. Cascaval, Ciro D'Apice, Maria Pia D'Arienzo, Rosanna Manzo. Flow optimization in vascular networks. Mathematical Biosciences & Engineering, 2017, 14 (3) : 607-624. doi: 10.3934/mbe.2017035

[6]

Edoardo Mainini. On the signed porous medium flow. Networks and Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[7]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks and Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

[8]

Magnus Aspenberg, Fredrik Ekström, Tomas Persson, Jörg Schmeling. On the asymptotics of the scenery flow. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2797-2815. doi: 10.3934/dcds.2015.35.2797

[9]

Tai-Ping Liu, Zhouping Xin, Tong Yang. Vacuum states for compressible flow. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 1-32. doi: 10.3934/dcds.1998.4.1

[10]

Tracy L. Payne. The Ricci flow for nilmanifolds. Journal of Modern Dynamics, 2010, 4 (1) : 65-90. doi: 10.3934/jmd.2010.4.65

[11]

Thomas H. Otway. Compressible flow on manifolds. Conference Publications, 2001, 2001 (Special) : 289-294. doi: 10.3934/proc.2001.2001.289

[12]

Amina Mecherbet. Sedimentation of particles in Stokes flow. Kinetic and Related Models, 2019, 12 (5) : 995-1044. doi: 10.3934/krm.2019038

[13]

Sergey A. Suslov. Two-equation model of mean flow resonances in subcritical flow systems. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 165-176. doi: 10.3934/dcdss.2008.1.165

[14]

Gui-Qiang Chen, Bo Su. A viscous approximation for a multidimensional unsteady Euler flow: Existence theorem for potential flow. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1587-1606. doi: 10.3934/dcds.2003.9.1587

[15]

Jian Zhai, Jianping Fang, Lanjun Li. Wave map with potential and hypersurface flow. Conference Publications, 2005, 2005 (Special) : 940-946. doi: 10.3934/proc.2005.2005.940

[16]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[17]

Joey Y. Huang. Trajectory of a moving curveball in viscid flow. Conference Publications, 2001, 2001 (Special) : 191-198. doi: 10.3934/proc.2001.2001.191

[18]

Michael Renardy. Backward uniqueness for linearized compressible flow. Evolution Equations and Control Theory, 2015, 4 (1) : 107-113. doi: 10.3934/eect.2015.4.107

[19]

R.E. Showalter, Ning Su. Partially saturated flow in a poroelastic medium. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 403-420. doi: 10.3934/dcdsb.2001.1.403

[20]

Petr Bauer, Michal Beneš, Radek Fučík, Hung Hoang Dieu, Vladimír Klement, Radek Máca, Jan Mach, Tomáš Oberhuber, Pavel Strachota, Vítězslav Žabka, Vladimír Havlena. Numerical simulation of flow in fluidized beds. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 833-846. doi: 10.3934/dcdss.2015.8.833

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]