-
Previous Article
A saddle point theorem for functional state-dependent delay differential equations
- DCDS Home
- This Issue
-
Next Article
Divergent diagrams of folds and simultaneous conjugacy of involutions
A new cubic system having eleven limit cycles
1. | Department of Mathematics, Shanghai Normal University, Shanghai 200234, China |
2. | Department of Mathematics, Shanghai Normal University, Tempe, Shanghai 200234, China, China |
[1] |
Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 |
[2] |
Jon Chaika, Donald Robertson. Uniform distribution of saddle connection lengths (with an appendix by Daniel El-Baz and Bingrong Huang). Journal of Modern Dynamics, 2019, 15: 329-343. doi: 10.3934/jmd.2019023 |
[3] |
Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 |
[4] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381 |
[5] |
Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883 |
[6] |
Flaviano Battelli, Ken Palmer. A remark about Sil'nikov saddle-focus homoclinic orbits. Communications on Pure and Applied Analysis, 2011, 10 (3) : 817-830. doi: 10.3934/cpaa.2011.10.817 |
[7] |
W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 |
[8] |
Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069 |
[9] |
Xingbo Liu, Deming Zhu. On the stability of homoclinic loops with higher dimension. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 915-932. doi: 10.3934/dcdsb.2012.17.915 |
[10] |
Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 |
[11] |
Roderick S. C. Wong, H. Y. Zhang. On the connection formulas of the third Painlevé transcendent. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 541-560. doi: 10.3934/dcds.2009.23.541 |
[12] |
Otávio J. N. T. N. dos Santos, Emerson L. Monte Carmelo. A connection between sumsets and covering codes of a module. Advances in Mathematics of Communications, 2018, 12 (3) : 595-605. doi: 10.3934/amc.2018035 |
[13] |
C. Alonso-González, M. I. Camacho, F. Cano. Topological classification of multiple saddle connections. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 395-414. doi: 10.3934/dcds.2006.15.395 |
[14] |
Benjamin Dozier. Equidistribution of saddle connections on translation surfaces. Journal of Modern Dynamics, 2019, 14: 87-120. doi: 10.3934/jmd.2019004 |
[15] |
Shunfu Jin, Wuyi Yue, Zhanqiang Huo. Performance evaluation for connection oriented service in the next generation Internet. Numerical Algebra, Control and Optimization, 2011, 1 (4) : 749-761. doi: 10.3934/naco.2011.1.749 |
[16] |
Pavel I. Etingof. Galois groups and connection matrices of q-difference equations. Electronic Research Announcements, 1995, 1: 1-9. |
[17] |
Flank D. M. Bezerra, Rodiak N. Figueroa-López, Marcelo J. D. Nascimento. Fractional oscillon equations; solvability and connection with classical oscillon equations. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2257-2277. doi: 10.3934/cpaa.2021067 |
[18] |
Xiao Wen. Structurally stable homoclinic classes. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1693-1707. doi: 10.3934/dcds.2016.36.1693 |
[19] |
Victoria Rayskin. Homoclinic tangencies in $R^n$. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 465-480. doi: 10.3934/dcds.2005.12.465 |
[20] |
Christian Bonatti, Shaobo Gan, Dawei Yang. On the hyperbolicity of homoclinic classes. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1143-1162. doi: 10.3934/dcds.2009.25.1143 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]