October  2005, 12(5): 959-972. doi: 10.3934/dcds.2005.12.959

A generalization of Desch--Schappacher--Webb criteria for chaos

1. 

School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa

2. 

Wydział Matematyki Informatyki i Mechaniki, Uniwersytet Warszawski, ul. Banacha 2, 02-097 Warszawa, Poland

Received  May 2004 Revised  July 2004 Published  February 2005

In [8] the authors proved that a linear dynamical system $\mathcal T$ on a Banach space $X$ is topologically chaotic if there exists a selection of eigenvectors of the generator of $\mathcal T$, that is analytic in some open set of a complex plane that meets the imaginary axis, and such that a non-degeneracy condition holds. In this paper we show that if we drop the last assumption, then $\mathcal T$ is still chaotic albeit in a possibly smaller, but still infinite-dimensional, $\mathcal T$-invariant subspace of $X$. Such kind of chaotic behaviour we shall call subspace chaos. We also present criteria that allow to rule out subspace chaos in certain dynamical systems and discuss simple but instructive examples where these criteria are applied to the birth, as well as the death, type systems of population dynamics.
Citation: Jacek Banasiak, Marcin Moszyński. A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 959-972. doi: 10.3934/dcds.2005.12.959
[1]

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67

[2]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[3]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[4]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control and Related Fields, 2022, 12 (1) : 17-47. doi: 10.3934/mcrf.2021001

[5]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[6]

Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control and Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83

[7]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 821-836. doi: 10.3934/dcdsb.2021066

[8]

Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529

[9]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[10]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[11]

Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks and Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267

[12]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[13]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control and Related Fields, 2022, 12 (1) : 245-273. doi: 10.3934/mcrf.2021021

[14]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[15]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[16]

Chunyan Zhao, Chengkui Zhong, Xiangming Zhu. Existence of compact $ \varphi $-attracting sets and estimate of their attractive velocity for infinite-dimensional dynamical systems. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022051

[17]

Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020

[18]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial and Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[19]

Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181

[20]

Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (178)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]