October  2005, 12(5): 959-972. doi: 10.3934/dcds.2005.12.959

A generalization of Desch--Schappacher--Webb criteria for chaos


School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa


Wydział Matematyki Informatyki i Mechaniki, Uniwersytet Warszawski, ul. Banacha 2, 02-097 Warszawa, Poland

Received  May 2004 Revised  July 2004 Published  February 2005

In [8] the authors proved that a linear dynamical system $\mathcal T$ on a Banach space $X$ is topologically chaotic if there exists a selection of eigenvectors of the generator of $\mathcal T$, that is analytic in some open set of a complex plane that meets the imaginary axis, and such that a non-degeneracy condition holds. In this paper we show that if we drop the last assumption, then $\mathcal T$ is still chaotic albeit in a possibly smaller, but still infinite-dimensional, $\mathcal T$-invariant subspace of $X$. Such kind of chaotic behaviour we shall call subspace chaos. We also present criteria that allow to rule out subspace chaos in certain dynamical systems and discuss simple but instructive examples where these criteria are applied to the birth, as well as the death, type systems of population dynamics.
Citation: Jacek Banasiak, Marcin Moszyński. A generalization of Desch--Schappacher--Webb criteria for chaos. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 959-972. doi: 10.3934/dcds.2005.12.959

Jacek Banasiak, Marcin Moszyński. Dynamics of birth-and-death processes with proliferation - stability and chaos. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 67-79. doi: 10.3934/dcds.2011.29.67


Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207


J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731


Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001


Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066


Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149


Chris Guiver, Mark R. Opmeer. Bounded real and positive real balanced truncation for infinite-dimensional systems. Mathematical Control & Related Fields, 2013, 3 (1) : 83-119. doi: 10.3934/mcrf.2013.3.83


Jacek Banasiak, Mustapha Mokhtar-Kharroubi. Universality of dishonesty of substochastic semigroups: Shattering fragmentation and explosive birth-and-death processes. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 529-542. doi: 10.3934/dcdsb.2005.5.529


Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021


Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure & Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281


Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072


Didier Georges. Infinite-dimensional nonlinear predictive control design for open-channel hydraulic systems. Networks & Heterogeneous Media, 2009, 4 (2) : 267-285. doi: 10.3934/nhm.2009.4.267


Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303


Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407


H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77


Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020


Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15


Jacques Demongeot, Dan Istrate, Hajer Khlaifi, Lucile Mégret, Carla Taramasco, René Thomas. From conservative to dissipative non-linear differential systems. An application to the cardio-respiratory regulation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2121-2134. doi: 10.3934/dcdss.2020181


Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012


Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006

2020 Impact Factor: 1.392


  • PDF downloads (128)
  • HTML views (0)
  • Cited by (32)

Other articles
by authors

[Back to Top]