-
Previous Article
Numerical periodic orbits of neutral delay differential equations
- DCDS Home
- This Issue
-
Next Article
Buried Sierpinski curve Julia sets
Periodic points of holomorphic twist maps
1. | Mathematics Department, University of Michigan, 530 Church Street, 2074 East Hall, Ann Arbor, MI 48109-1043, United States |
[1] |
Xu Zhang, Guanrong Chen. Polynomial maps with hidden complex dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2941-2954. doi: 10.3934/dcdsb.2018293 |
[2] |
Grzegorz Graff, Michał Misiurewicz, Piotr Nowak-Przygodzki. Periodic points of latitudinal maps of the $m$-dimensional sphere. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6187-6199. doi: 10.3934/dcds.2016070 |
[3] |
Inês Cruz, Helena Mena-Matos, Esmeralda Sousa-Dias. The group of symplectic birational maps of the plane and the dynamics of a family of 4D maps. Journal of Geometric Mechanics, 2020, 12 (3) : 363-375. doi: 10.3934/jgm.2020010 |
[4] |
Marian Gidea, Yitzchak Shmalo. Combinatorial approach to detection of fixed points, periodic orbits, and symbolic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6123-6148. doi: 10.3934/dcds.2018264 |
[5] |
Xin Zhang, Shuangling Yang. Complex dynamics in a quasi-periodic plasma perturbations model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4013-4043. doi: 10.3934/dcdsb.2020272 |
[6] |
Grzegorz Graff, Jerzy Jezierski. Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds. Conference Publications, 2011, 2011 (Special) : 523-532. doi: 10.3934/proc.2011.2011.523 |
[7] |
K. H. Kim, F. W. Roush and J. B. Wagoner. Inert actions on periodic points. Electronic Research Announcements, 1997, 3: 55-62. |
[8] |
Charles Pugh, Michael Shub. Periodic points on the $2$-sphere. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1171-1182. doi: 10.3934/dcds.2014.34.1171 |
[9] |
Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811 |
[10] |
Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077 |
[11] |
Pablo G. Barrientos, Artem Raibekas. Robustly non-hyperbolic transitive symplectic dynamics. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 5993-6013. doi: 10.3934/dcds.2018259 |
[12] |
Fasma Diele, Carmela Marangi. Positive symplectic integrators for predator-prey dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2661-2678. doi: 10.3934/dcdsb.2017185 |
[13] |
Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681 |
[14] |
Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321 |
[15] |
Richard Miles, Thomas Ward. Directional uniformities, periodic points, and entropy. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3525-3545. doi: 10.3934/dcdsb.2015.20.3525 |
[16] |
Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81 |
[17] |
Meiyu Su. True laminations for complex Hènon maps. Conference Publications, 2003, 2003 (Special) : 834-841. doi: 10.3934/proc.2003.2003.834 |
[18] |
Bastian Laubner, Dierk Schleicher, Vlad Vicol. A combinatorial classification of postsingularly finite complex exponential maps. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 663-682. doi: 10.3934/dcds.2008.22.663 |
[19] |
Lluís Alsedà, David Juher, Pere Mumbrú. Minimal dynamics for tree maps. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 511-541. doi: 10.3934/dcds.2008.20.511 |
[20] |
Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]