-
Previous Article
Lyapunov exponents for continuous transformations and dimension theory
- DCDS Home
- This Issue
-
Next Article
A tridimensional phase-field model with convection for phase change of an alloy
Strict inequalities for the entropy of transitive piecewise monotone maps
1. | Department of Mathematical Sciences, IUPUI, 402 N. Blackford Street, Indianapolis, IN 46202-3216 |
2. | Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A 1090 Wien, Austria |
[1] |
José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781 |
[2] |
Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 |
[3] |
Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 |
[4] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
[5] |
Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 |
[6] |
Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 |
[7] |
James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353 |
[8] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[9] |
Sergio Muñoz. Robust transitivity of maps of the real line. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1163-1177. doi: 10.3934/dcds.2015.35.1163 |
[10] |
Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673 |
[11] |
Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877 |
[12] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[13] |
Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433 |
[14] |
José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415 |
[15] |
Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272 |
[16] |
Michel Laurent, Arnaldo Nogueira. Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series. Journal of Modern Dynamics, 2021, 17: 33-63. doi: 10.3934/jmd.2021002 |
[17] |
Tim Gutjahr, Karsten Keller. Equality of Kolmogorov-Sinai and permutation entropy for one-dimensional maps consisting of countably many monotone parts. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4207-4224. doi: 10.3934/dcds.2019170 |
[18] |
Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617 |
[19] |
Jason Atnip, Mariusz Urbański. Critically finite random maps of an interval. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4839-4906. doi: 10.3934/dcds.2020204 |
[20] |
Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]