Advanced Search
Article Contents
Article Contents

Strict inequalities for the entropy of transitive piecewise monotone maps

Abstract Related Papers Cited by
  • Let $T:[0,1]\to [0,1]$ be a piecewise differentiable piecewise monotone map, and let $r>1$. It is well known that if $|T'|\le r$ (respectively $|T'|\ge r$) then $h_{t o p}(T)\le$ log $r$ (respectively $h_{t o p}(T)\ge$ log $r$). We show that if additionally $|T'| < r $ (respectively $ |T'| > r $) on some subinterval and $T$ is topologically transitive then the inequalities for the entropy are strict. We also give examples that the assumption of piecewise monotonicity is essential, even if $T$ is continuous. In one class of examples the dynamical dimension of the whole interval can be made arbitrarily small.
    Mathematics Subject Classification: Primary: 37E05, 37B40.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(91) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint