# American Institute of Mathematical Sciences

April  2005, 13(3): 637-658. doi: 10.3934/dcds.2005.13.637

## Patterns generation and transition matrices in multi-dimensional lattice models

 1 The National Center for Theoretical Sciences, Hsinchu 300, Taiwan 2 Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan

Received  September 2004 Revised  January 2005 Published  May 2005

In this paper we develop a general approach for investigating pattern generation problems in multi-dimensional lattice models. Let $\mathcal S$ be a set of $p$ symbols or colors, $\mathbf Z_N$ a fixed finite rectangular sublattice of $\mathbf Z^d$, $d\geq 1$ and $N$ a $d$-tuple of positive integers. Functions $U:\mathbf Z^d\rightarrow \mathcal S$ and $U_N:\mathbf Z_N\rightarrow \mathcal S$ are called a global pattern and a local pattern on $\mathbf Z_N$, respectively. We introduce an ordering matrix $\mathbf X_N$ for $\Sigma_N$, the set of all local patterns on $\mathbf Z_N$. For a larger finite lattice ${\mathbf Z}_{\scriptsize\tilde{N}}$, ${\small \tilde{N}\geq N}$, we derive a recursion formula to obtain the ordering matrix ${\mathbf X}_{\scriptsize\tilde{N}}$ of $\Sigma_{\scriptsize\tilde{N}}$ from $\mathbf X_N$. For a given basic admissible local patterns set $\mathcal B\subset \Sigma_N$, the transition matrix $\mathbf T_N(\mathcal B)$ is defined. For each $\scriptsize{\tilde{N}\geq N}$, denoted by $\Sigma_{\scriptsize\tilde{N}} (\mathcal B)$ the set of all local patterns which can be generated from $\mathcal B$, the cardinal number of $\Sigma_{\scriptsize\tilde{N}} (\mathcal B)$ is the sum of entries of the transition matrix ${\mathbf T}_{\scriptsize\tilde{N}} (\mathcal B)$ which can be obtained from $\mathbf T_N(\mathcal B)$ recursively. The spatial entropy $h(\mathcal B)$ can be obtained by computing the maximum eigenvalues of a sequence of transition matrices $\mathbf T_n(\mathcal B)$. The results can be applied to study the set of global stationary solutions in various Lattice Dynamical Systems and Cellular Neural Networks.
Citation: Jung-Chao Ban, Song-Sun Lin. Patterns generation and transition matrices in multi-dimensional lattice models. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 637-658. doi: 10.3934/dcds.2005.13.637
 [1] Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 [2] Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705 [3] Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 [4] Tian Ma, Shouhong Wang. Dynamic transition and pattern formation for chemotactic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2809-2835. doi: 10.3934/dcdsb.2014.19.2809 [5] Jairo Bochi, Michal Rams. The entropy of Lyapunov-optimizing measures of some matrix cocycles. Journal of Modern Dynamics, 2016, 10: 255-286. doi: 10.3934/jmd.2016.10.255 [6] Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75 [7] Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785 [8] Jérôme Rousseau, Paulo Varandas, Yun Zhao. Entropy formulas for dynamical systems with mistakes. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4391-4407. doi: 10.3934/dcds.2012.32.4391 [9] Yujun Zhu. Preimage entropy for random dynamical systems. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829 [10] Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803 [11] Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445 [12] Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155 [13] Sonia Martínez, Jorge Cortés, Francesco Bullo. A catalog of inverse-kinematics planners for underactuated systems on matrix groups. Journal of Geometric Mechanics, 2009, 1 (4) : 445-460. doi: 10.3934/jgm.2009.1.445 [14] Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1 [15] Peizhao Yu, Guoshan Zhang. Eigenstructure assignment for polynomial matrix systems ensuring normalization and impulse elimination. Mathematical Foundations of Computing, 2019, 2 (3) : 251-266. doi: 10.3934/mfc.2019016 [16] Cornelia Schiebold. Noncommutative AKNS systems and multisoliton solutions to the matrix sine-gordon equation. Conference Publications, 2009, 2009 (Special) : 678-690. doi: 10.3934/proc.2009.2009.678 [17] Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009 [18] Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014 [19] Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009 [20] Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

2021 Impact Factor: 1.588