April  2005, 13(3): 795-810. doi: 10.3934/dcds.2005.13.795

On the monotonicity of the period function of a quadratic system

1. 

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275

Received  November 2004 Revised  April 2005 Published  May 2005

In this paper, we study the monotonicity of the period function of the quadratic system

$ \dot x=- y + x y,\quad \dot y=x + 2 y^2-c x^2, \quad -\infty < c < +\infty.$

We show that this system has two isochronous centers for $c=1/2$, and its period function has only one critical point for $c\in(7/5, 2)$. For all other cases, the period function is monotone. This improves the results in [1].

Citation: Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795
[1]

Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2021080

[2]

Yu Chen, Yanheng Ding, Suhong Li. Existence and concentration for Kirchhoff type equations around topologically critical points of the potential. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1641-1671. doi: 10.3934/cpaa.2017079

[3]

Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615

[4]

Keith Promislow, Hang Zhang. Critical points of functionalized Lagrangians. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1231-1246. doi: 10.3934/dcds.2013.33.1231

[5]

Tsung-Fang Wu. On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 383-405. doi: 10.3934/cpaa.2008.7.383

[6]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[7]

P. Candito, S. A. Marano, D. Motreanu. Critical points for a class of nondifferentiable functions and applications. Discrete & Continuous Dynamical Systems, 2005, 13 (1) : 175-194. doi: 10.3934/dcds.2005.13.175

[8]

Jaime Arango, Adriana Gómez. Critical points of solutions to elliptic problems in planar domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 327-338. doi: 10.3934/cpaa.2011.10.327

[9]

Stefano Almi, Massimo Fornasier, Richard Huber. Data-driven evolutions of critical points. Foundations of Data Science, 2020, 2 (3) : 207-255. doi: 10.3934/fods.2020011

[10]

Marc Briane. Isotropic realizability of electric fields around critical points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 353-372. doi: 10.3934/dcdsb.2014.19.353

[11]

Cristian Bereanu, Petru Jebelean. Multiple critical points for a class of periodic lower semicontinuous functionals. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 47-66. doi: 10.3934/dcds.2013.33.47

[12]

Jungsoo Kang. Survival of infinitely many critical points for the Rabinowitz action functional. Journal of Modern Dynamics, 2010, 4 (4) : 733-739. doi: 10.3934/jmd.2010.4.733

[13]

Kensuke Yoshizawa. The critical points of the elastic energy among curves pinned at endpoints. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021122

[14]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

[15]

Chi-Kwong Fok. Picard group of isotropic realizations of twisted Poisson manifolds. Journal of Geometric Mechanics, 2016, 8 (2) : 179-197. doi: 10.3934/jgm.2016003

[16]

Tomasz Dlotko, Tongtong Liang, Yejuan Wang. Critical and super-critical abstract parabolic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1517-1541. doi: 10.3934/dcdsb.2019238

[17]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[18]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[19]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[20]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]