April  2005, 13(3): 827-841. doi: 10.3934/dcds.2005.13.827

Attractors under discretizations with variable stepsize

1. 

Department of Mathematics, University of Technology, 1521 Budapest, Hungary

2. 

Department of Mathematics, Chungnam National University, Daejeon, 305-764

Received  January 2003 Revised  May 2005 Published  May 2005

The standard upper and lower semicontinuity results for discretized attractors [22], [13], [5] are generalized for discretizations with variable stepsize. Several examples demonstrate that the limiting behaviour depends crucially on the stepsize sequence. For stepsize sequences suitably chosen, convergence to the exact attractor in the Hausdorff metric is proven. Connections to pullback attractors in cocycle dynamics are pointed out.
Citation: Barnabas M. Garay, Keonhee Lee. Attractors under discretizations with variable stepsize. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 827-841. doi: 10.3934/dcds.2005.13.827
[1]

Peter E. Kloeden, Björn Schmalfuss. Lyapunov functions and attractors under variable time-step discretization. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 163-172. doi: 10.3934/dcds.1996.2.163

[2]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[3]

Ulisse Stefanelli. Analysis of a variable time-step discretization for a phase transition model with micro-movements. Communications on Pure & Applied Analysis, 2006, 5 (3) : 659-673. doi: 10.3934/cpaa.2006.5.659

[4]

Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial & Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299

[5]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[6]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[7]

Fernando Jiménez, Jürgen Scheurle. On some aspects of the discretization of the suslov problem. Journal of Geometric Mechanics, 2018, 10 (1) : 43-68. doi: 10.3934/jgm.2018002

[8]

Matthieu Hillairet, Alexei Lozinski, Marcela Szopos. On discretization in time in simulations of particulate flows. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 935-956. doi: 10.3934/dcdsb.2011.15.935

[9]

Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477

[10]

P.E. Kloeden, Victor S. Kozyakin. Uniform nonautonomous attractors under discretization. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 423-433. doi: 10.3934/dcds.2004.10.423

[11]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[12]

Simone Göttlich, Ute Ziegler, Michael Herty. Numerical discretization of Hamilton--Jacobi equations on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 685-705. doi: 10.3934/nhm.2013.8.685

[13]

Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1075-1102. doi: 10.3934/dcdss.2020064

[14]

Fernando Jiménez, Jürgen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb{R}^n$. Journal of Geometric Mechanics, 2015, 7 (1) : 43-80. doi: 10.3934/jgm.2015.7.43

[15]

Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677

[16]

Luca Dieci, Timo Eirola, Cinzia Elia. Periodic orbits of planar discontinuous system under discretization. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2743-2762. doi: 10.3934/dcdsb.2018103

[17]

Wenxue Huang, Qitian Qiu. Forward supervised discretization for multivariate with categorical responses. Big Data & Information Analytics, 2016, 1 (2&3) : 217-225. doi: 10.3934/bdia.2016005

[18]

Changbing Hu, Kaitai Li. A simple construction of inertial manifolds under time discretization. Discrete & Continuous Dynamical Systems, 1997, 3 (4) : 531-540. doi: 10.3934/dcds.1997.3.531

[19]

Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524

[20]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]