- Previous Article
- DCDS Home
- This Issue
-
Next Article
Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system
Attractors under discretizations with variable stepsize
1. | Department of Mathematics, University of Technology, 1521 Budapest, Hungary |
2. | Department of Mathematics, Chungnam National University, Daejeon, 305-764 |
[1] |
Peter E. Kloeden, Björn Schmalfuss. Lyapunov functions and attractors under variable time-step discretization. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 163-172. doi: 10.3934/dcds.1996.2.163 |
[2] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1857-1871. doi: 10.3934/cpaa.2021043 |
[3] |
Ulisse Stefanelli. Analysis of a variable time-step discretization for a phase transition model with micro-movements. Communications on Pure and Applied Analysis, 2006, 5 (3) : 659-673. doi: 10.3934/cpaa.2006.5.659 |
[4] |
Giacomo Frassoldati, Luca Zanni, Gaetano Zanghirati. New adaptive stepsize selections in gradient methods. Journal of Industrial and Management Optimization, 2008, 4 (2) : 299-312. doi: 10.3934/jimo.2008.4.299 |
[5] |
Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61 |
[6] |
Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543 |
[7] |
Fernando Jiménez, Jürgen Scheurle. On some aspects of the discretization of the suslov problem. Journal of Geometric Mechanics, 2018, 10 (1) : 43-68. doi: 10.3934/jgm.2018002 |
[8] |
Matthieu Hillairet, Alexei Lozinski, Marcela Szopos. On discretization in time in simulations of particulate flows. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 935-956. doi: 10.3934/dcdsb.2011.15.935 |
[9] |
Mathieu Desbrun, Evan S. Gawlik, François Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 477-509. doi: 10.3934/dcds.2014.34.477 |
[10] |
P.E. Kloeden, Victor S. Kozyakin. Uniform nonautonomous attractors under discretization. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 423-433. doi: 10.3934/dcds.2004.10.423 |
[11] |
Yuan Shen, Chang Liu, Yannian Zuo, Xingying Zhang. A modified self-adaptive dual ascent method with relaxed stepsize condition for linearly constrained quadratic convex optimization. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022101 |
[12] |
Simone Göttlich, Ute Ziegler, Michael Herty. Numerical discretization of Hamilton--Jacobi equations on networks. Networks and Heterogeneous Media, 2013, 8 (3) : 685-705. doi: 10.3934/nhm.2013.8.685 |
[13] |
Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1075-1102. doi: 10.3934/dcdss.2020064 |
[14] |
Fernando Jiménez, Jürgen Scheurle. On the discretization of nonholonomic dynamics in $\mathbb{R}^n$. Journal of Geometric Mechanics, 2015, 7 (1) : 43-80. doi: 10.3934/jgm.2015.7.43 |
[15] |
Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677 |
[16] |
Luca Dieci, Timo Eirola, Cinzia Elia. Periodic orbits of planar discontinuous system under discretization. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2743-2762. doi: 10.3934/dcdsb.2018103 |
[17] |
Wenxue Huang, Qitian Qiu. Forward supervised discretization for multivariate with categorical responses. Big Data & Information Analytics, 2016, 1 (2&3) : 217-225. doi: 10.3934/bdia.2016005 |
[18] |
Changbing Hu, Kaitai Li. A simple construction of inertial manifolds under time discretization. Discrete and Continuous Dynamical Systems, 1997, 3 (4) : 531-540. doi: 10.3934/dcds.1997.3.531 |
[19] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial and Management Optimization, 2022, 18 (2) : 773-794. doi: 10.3934/jimo.2020178 |
[20] |
Petr Kůrka. On the measure attractor of a cellular automaton. Conference Publications, 2005, 2005 (Special) : 524-535. doi: 10.3934/proc.2005.2005.524 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]