-
Previous Article
Phase pattern in a Ginzburg-Landau model with a discontinuous coefficient in a ring
- DCDS Home
- This Issue
-
Next Article
Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition
Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure
1. | Department of Mathematics, Faculty of Education, Ehime University, Matsuyama, 790-8577 |
[1] |
Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69 |
[2] |
Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289 |
[3] |
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 |
[4] |
Shigeaki Koike, Takahiro Kosugi. Remarks on the comparison principle for quasilinear PDE with no zeroth order terms. Communications on Pure and Applied Analysis, 2015, 14 (1) : 133-142. doi: 10.3934/cpaa.2015.14.133 |
[5] |
Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739 |
[6] |
Thomas Leroy. Relativistic transfer equations: Comparison principle and convergence to the non-equilibrium regime. Kinetic and Related Models, 2015, 8 (4) : 725-763. doi: 10.3934/krm.2015.8.725 |
[7] |
Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897 |
[8] |
Mohamed Badreddine, Thomas K. DeLillo, Saman Sahraei. A Comparison of some numerical conformal mapping methods for simply and multiply connected domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 55-82. doi: 10.3934/dcdsb.2018100 |
[9] |
Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic and Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048 |
[10] |
L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg. The degenerate and non-degenerate deep quench obstacle problem: A numerical comparison. Networks and Heterogeneous Media, 2013, 8 (1) : 37-64. doi: 10.3934/nhm.2013.8.37 |
[11] |
Asif Yokus, Mehmet Yavuz. Novel comparison of numerical and analytical methods for fractional Burger–Fisher equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2591-2606. doi: 10.3934/dcdss.2020258 |
[12] |
Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747 |
[13] |
Shuxia Pan. Asymptotic spreading in a delayed dispersal predator-prey system without comparison principle. Electronic Research Archive, 2019, 27: 89-99. doi: 10.3934/era.2019011 |
[14] |
Rachel Kuske, Peter Borowski. Survival of subthreshold oscillations: The interplay of noise, bifurcation structure, and return mechanism. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 873-895. doi: 10.3934/dcdss.2009.2.873 |
[15] |
Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steady-states for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467-476. doi: 10.3934/proc.2013.2013.467 |
[16] |
Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 |
[17] |
Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147 |
[18] |
Tian Chen, Zhen Wu. A general maximum principle for partially observed mean-field stochastic system with random jumps in progressive structure. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022012 |
[19] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[20] |
Hideaki Takaichi, Izumi Takagi, Shoji Yotsutani. Global bifurcation structure on a shadow system with a source term - Representation of all solutions-. Conference Publications, 2011, 2011 (Special) : 1344-1350. doi: 10.3934/proc.2011.2011.1344 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]