April  2006, 14(2): 295-328. doi: 10.3934/dcds.2006.14.295

Topological methods in the instability problem of Hamiltonian systems

1. 

Department of Mathematics, Northeastern Illinois University, Chicago, IL 60625, United States

2. 

Department of Mathematics, 1 University Station C1200, University of Texas, Austin, TX 78712, United States

Received  February 2005 Revised  June 2005 Published  November 2005

We use topological methods to investigate some recently proposed mechanisms of instability (Arnol'd diffusion) in Hamiltonian systems.
In these mechanisms, chains of heteroclinic connections between whiskered tori are constructed, based on the existence of a normally hyperbolic manifold $\Lambda$, so that: (a) the manifold $\Lambda$ is covered rather densely by transitive tori (possibly of different topology), (b) the manifolds $W^\s_\Lambda$, $W^\u_\Lambda$ intersect transversally, (c) the systems satisfies some explicit non-degeneracy assumptions, which hold generically.
In this paper we use the method of correctly aligned windows to show that, under the assumptions (a), (b), (c), there are orbits that move a significant amount.
As a matter of fact, the method presented here does not require that the tori are exactly invariant, only that they are approximately invariant. Hence, compared with the previous papers, we do not need to use KAM theory. This lowers the assumptions on differentiability.
Also, the method presented here allows us to produce concrete estimates on the time to move, which were not considered in the previous papers.
Citation: Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295
[1]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[2]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[3]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[4]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[5]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[6]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[9]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (28)

Other articles
by authors

[Back to Top]