-
Previous Article
Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems
- DCDS Home
- This Issue
-
Next Article
The degenerate logistic model and a singularly mixed boundary blow-up problem
Interacting spots in reaction diffusion systems
1. | Faculty of Mathematics, Kyushu University, Ropponmatsu Chuo-ku, Fukuoka, 810-8560, Japan |
2. | School of Science and Technology, Meiji University, Higashimita 1-1-1 Tama-ku Kawasaki, 214-8571, Japan |
3. | Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Kanazawa, 920-1192, Japan |
[1] |
Yan-Yu Chen, Yoshihito Kohsaka, Hirokazu Ninomiya. Traveling spots and traveling fingers in singular limit problems of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 697-714. doi: 10.3934/dcdsb.2014.19.697 |
[2] |
James B. Kennedy, Jonathan Rohleder. On the hot spots of quantum graphs. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3029-3063. doi: 10.3934/cpaa.2021095 |
[3] |
C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872 |
[4] |
H. J. Hupkes, L. Morelli. Travelling corners for spatially discrete reaction-diffusion systems. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1609-1667. doi: 10.3934/cpaa.2020058 |
[5] |
Yuanwei Qi. Travelling fronts of reaction diffusion systems modeling auto-catalysis. Conference Publications, 2009, 2009 (Special) : 622-629. doi: 10.3934/proc.2009.2009.622 |
[6] |
Xiao-Hui Li, Huo-Jun Ruan. The "hot spots" conjecture on higher dimensional Sierpinski gaskets. Communications on Pure and Applied Analysis, 2016, 15 (1) : 287-297. doi: 10.3934/cpaa.2016.15.287 |
[7] |
Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 |
[8] |
Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115 |
[9] |
Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775 |
[10] |
Kazuhiro Ishige, Y. Kabeya. Hot spots for the two dimensional heat equation with a rapidly decaying negative potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 833-849. doi: 10.3934/dcdss.2011.4.833 |
[11] |
Qi Wang, Yanren Hou. Determining an obstacle by far-field data measured at a few spots. Inverse Problems and Imaging, 2015, 9 (2) : 591-600. doi: 10.3934/ipi.2015.9.591 |
[12] |
Shigehiro Sakata, Yuta Wakasugi. Movement of time-delayed hot spots in Euclidean space for a degenerate initial state. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2705-2738. doi: 10.3934/dcds.2020147 |
[13] |
Sheng-Chen Fu. Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 189-196. doi: 10.3934/dcdsb.2011.16.189 |
[14] |
Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041 |
[15] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[16] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[17] |
Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41 |
[18] |
Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030 |
[19] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[20] |
Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]