April  2006, 14(2): 355-363. doi: 10.3934/dcds.2006.14.355

A note about stable transitivity of noncompact extensions of hyperbolic systems

1. 

Department of Mathematics and Statistics, University of Surrey, Guildford, Surrey GU2 7XH

2. 

Department of Mathematics, West Chester University, West Chester, PA 19383, United States

3. 

Department of Mathematics, University of Houston, Houston, TX 77204-3008

Received  November 2004 Revised  February 2005 Published  November 2005

Let $f:X\to X$ be the restriction to a hyperbolic basic set of a smooth diffeomorphism. If $G$ is the special Euclidean group $SE(2)$ we show that in the set of $C^2$ $G$-extensions of $f$ there exists an open and dense subset of stably transitive transformations. If $G=K\times \mathbb R^n$, where $K$ is a compact connected Lie group, we show that an open and dense set of $C^2$ $G$-extensions satisfying a certain separation condition are transitive. The separation condition is necessary.
Citation: Ian Melbourne, V. Niţicâ, Andrei Török. A note about stable transitivity of noncompact extensions of hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 355-363. doi: 10.3934/dcds.2006.14.355
[1]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[2]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[3]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[4]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[7]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[8]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]