July  2006, 14(3): 533-547. doi: 10.3934/dcds.2006.14.533

One-dimensional attractor for a dissipative system with a cylindrical phase space

1. 

Dep. Matemática, FCT, Universidade Nova de Lisboa and CMAF, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

Received  September 2004 Revised  June 2005 Published  December 2005

Consider an attractor of a dissipative non-autonomous system with one angle coordinate. We give conditions for this attractor to be homeomorphic to the circle where we find connections with the work of R. A. Smith. Several applications are studied, such as: the forced pendulum, discretizations of the sine-Gordon equation, n'th order equations, among others.
Citation: Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533
[1]

I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173

[2]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[3]

Oskar Weinberger, Peter Ashwin. From coupled networks of systems to networks of states in phase space. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 2021-2041. doi: 10.3934/dcdsb.2018193

[4]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[5]

Boling Guo, Zhengde Dai. Attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 783-793. doi: 10.3934/dcds.1998.4.783

[6]

Jia-Cheng Zhao, Zhong-Xin Ma. Global attractor for a partly dissipative reaction-diffusion system with discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022103

[7]

Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure and Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044

[8]

Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003

[9]

Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371

[10]

Giuseppe Da Prato. Transition semigroups corresponding to Lipschitz dissipative systems. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 177-192. doi: 10.3934/dcds.2004.10.177

[11]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[12]

Jin Zhang, Yonghai Wang, Chengkui Zhong. Robustness of exponentially κ-dissipative dynamical systems with perturbations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3875-3890. doi: 10.3934/dcdsb.2017198

[13]

Renato C. Calleja, Alessandra Celletti, Rafael de la Llave. Construction of response functions in forced strongly dissipative systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4411-4433. doi: 10.3934/dcds.2013.33.4411

[14]

Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211

[15]

Luu Hoang Duc. Random attractors for dissipative systems with rough noises. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1873-1902. doi: 10.3934/dcds.2021176

[16]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[17]

Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

[18]

Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139

[19]

P. M. Jordan, Louis Fishman. Phase space and path integral approach to wave propagation modeling. Conference Publications, 2001, 2001 (Special) : 199-210. doi: 10.3934/proc.2001.2001.199

[20]

Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]