-
Previous Article
Global attractivity, I/O monotone small-gain theorems, and biological delay systems
- DCDS Home
- This Issue
-
Next Article
Decay rate of higher order derivatives for solutions to the 2-D dissipative quasi-geostrophic flows
One-dimensional attractor for a dissipative system with a cylindrical phase space
1. | Dep. Matemática, FCT, Universidade Nova de Lisboa and CMAF, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal |
[1] |
I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173 |
[2] |
Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005 |
[3] |
Oskar Weinberger, Peter Ashwin. From coupled networks of systems to networks of states in phase space. Discrete and Continuous Dynamical Systems - B, 2018, 23 (5) : 2021-2041. doi: 10.3934/dcdsb.2018193 |
[4] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[5] |
Boling Guo, Zhengde Dai. Attractor for the dissipative Hamiltonian amplitude equation governing modulated wave instabilities. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 783-793. doi: 10.3934/dcds.1998.4.783 |
[6] |
Jia-Cheng Zhao, Zhong-Xin Ma. Global attractor for a partly dissipative reaction-diffusion system with discontinuous nonlinearity. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022103 |
[7] |
Gaku Hoshino. Dissipative nonlinear schrödinger equations for large data in one space dimension. Communications on Pure and Applied Analysis, 2020, 19 (2) : 967-981. doi: 10.3934/cpaa.2020044 |
[8] |
Claudio Meneses. Linear phase space deformations with angular momentum symmetry. Journal of Geometric Mechanics, 2019, 11 (1) : 45-58. doi: 10.3934/jgm.2019003 |
[9] |
Kais Ammari, Eduard Feireisl, Serge Nicaise. Polynomial stabilization of some dissipative hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4371-4388. doi: 10.3934/dcds.2014.34.4371 |
[10] |
Giuseppe Da Prato. Transition semigroups corresponding to Lipschitz dissipative systems. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 177-192. doi: 10.3934/dcds.2004.10.177 |
[11] |
Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889 |
[12] |
Jin Zhang, Yonghai Wang, Chengkui Zhong. Robustness of exponentially κ-dissipative dynamical systems with perturbations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3875-3890. doi: 10.3934/dcdsb.2017198 |
[13] |
Renato C. Calleja, Alessandra Celletti, Rafael de la Llave. Construction of response functions in forced strongly dissipative systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4411-4433. doi: 10.3934/dcds.2013.33.4411 |
[14] |
Mostafa Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont, Olivier Goubet. Discrete Schrödinger equations and dissipative dynamical systems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 211-227. doi: 10.3934/cpaa.2008.7.211 |
[15] |
Luu Hoang Duc. Random attractors for dissipative systems with rough noises. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1873-1902. doi: 10.3934/dcds.2021176 |
[16] |
Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939 |
[17] |
Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481 |
[18] |
Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139 |
[19] |
P. M. Jordan, Louis Fishman. Phase space and path integral approach to wave propagation modeling. Conference Publications, 2001, 2001 (Special) : 199-210. doi: 10.3934/proc.2001.2001.199 |
[20] |
Evgeny L. Korotyaev. Estimates for solutions of KDV on the phase space of periodic distributions in terms of action variables. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 219-225. doi: 10.3934/dcds.2011.30.219 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]