
Previous Article
Timeperiodic solutions of the Boltzmann equation
 DCDS Home
 This Issue

Next Article
Onedimensional attractor for a dissipative system with a cylindrical phase space
Global attractivity, I/O monotone smallgain theorems, and biological delay systems
1.  Department of Mathematics, Rutgers University, Piscataway, NJ 088548019, United States, United States 
[1] 
Eugene Kashdan, Dominique Duncan, Andrew Parnell, Heinz Schättler. Mathematical methods in systems biology. Mathematical Biosciences & Engineering, 2016, 13 (6) : iii. doi: 10.3934/mbe.201606i 
[2] 
Monique Chyba, Benedetto Piccoli. Special issue on mathematical methods in systems biology. Networks & Heterogeneous Media, 2019, 14 (1) : iii. doi: 10.3934/nhm.20191i 
[3] 
Yoshiaki Muroya, Teresa Faria. Attractivity of saturated equilibria for LotkaVolterra systems with infinite delays and feedback controls. Discrete & Continuous Dynamical Systems  B, 2019, 24 (7) : 30893114. doi: 10.3934/dcdsb.2018302 
[4] 
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021027 
[5] 
Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571582. doi: 10.3934/mbe.2006.3.571 
[6] 
Yutian Lei. On the integral systems with negative exponents. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 10391057. doi: 10.3934/dcds.2015.35.1039 
[7] 
JeChiang Tsai. Global exponential stability of traveling waves in monotone bistable systems. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 601623. doi: 10.3934/dcds.2008.21.601 
[8] 
F. R. Guarguaglini, R. Natalini. Global existence and uniqueness of solutions for multidimensional weakly parabolic systems arising in chemistry and biology. Communications on Pure & Applied Analysis, 2007, 6 (1) : 287309. doi: 10.3934/cpaa.2007.6.287 
[9] 
Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 487515. doi: 10.3934/dcds.2001.7.487 
[10] 
Edward J. Allen. Derivation and computation of discretedelay and continuousdelay SDEs in mathematical biology. Mathematical Biosciences & Engineering, 2014, 11 (3) : 403425. doi: 10.3934/mbe.2014.11.403 
[11] 
Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems, 2012, 32 (9) : 30813097. doi: 10.3934/dcds.2012.32.3081 
[12] 
Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229240. doi: 10.3934/proc.2001.2001.229 
[13] 
Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 12151224. doi: 10.3934/dcds.2009.24.1215 
[14] 
Ta T.H. Trang, Vu N. Phat, Adly Samir. Finitetime stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303315. doi: 10.3934/jimo.2016.12.303 
[15] 
Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive timedelay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583596. doi: 10.3934/jimo.2017061 
[16] 
Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2022, 11 (1) : 239258. doi: 10.3934/eect.2021001 
[17] 
N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 5980. doi: 10.3934/dcdsb.2004.4.59 
[18] 
Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems  B, 2011, 16 (3) : 895925. doi: 10.3934/dcdsb.2011.16.895 
[19] 
Benjamin B. Kennedy. A statedependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems  B, 2013, 18 (6) : 16331650. doi: 10.3934/dcdsb.2013.18.1633 
[20] 
Benjamin B. Kennedy. A periodic solution with nonsimple oscillation for an equation with statedependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems  S, 2020, 13 (1) : 4766. doi: 10.3934/dcdss.2020003 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]