-
Previous Article
Stability for the vertical rotation interval of twist mappings
- DCDS Home
- This Issue
- Next Article
Non-contractible periodic orbits of Hamiltonian flows on twisted cotangent bundles
1. | Department of Mathematics, University of California, Santa Cruz, Santa Cruz CA, 95064, United States |
[1] |
Peter Albers, Urs Frauenfelder. Spectral invariants in Rabinowitz-Floer homology and global Hamiltonian perturbations. Journal of Modern Dynamics, 2010, 4 (2) : 329-357. doi: 10.3934/jmd.2010.4.329 |
[2] |
Sonja Hohloch. Transport, flux and growth of homoclinic Floer homology. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3587-3620. doi: 10.3934/dcds.2012.32.3587 |
[3] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001 |
[4] |
Alexander Fauck, Will J. Merry, Jagna Wiśniewska. Computing the Rabinowitz Floer homology of tentacular hyperboloids. Journal of Modern Dynamics, 2021, 17: 353-399. doi: 10.3934/jmd.2021013 |
[5] |
Viktor L. Ginzburg, Başak Z. Gürel. On the generic existence of periodic orbits in Hamiltonian dynamics. Journal of Modern Dynamics, 2009, 3 (4) : 595-610. doi: 10.3934/jmd.2009.3.595 |
[6] |
Morimichi Kawasaki, Ryuma Orita. Computation of annular capacity by Hamiltonian Floer theory of non-contractible periodic trajectories. Journal of Modern Dynamics, 2017, 11: 313-339. doi: 10.3934/jmd.2017013 |
[7] |
Michael Usher. Floer homology in disk bundles and symplectically twisted geodesic flows. Journal of Modern Dynamics, 2009, 3 (1) : 61-101. doi: 10.3934/jmd.2009.3.61 |
[8] |
Peter Albers, Urs Frauenfelder. Floer homology for negative line bundles and Reeb chords in prequantization spaces. Journal of Modern Dynamics, 2009, 3 (3) : 407-456. doi: 10.3934/jmd.2009.3.407 |
[9] |
Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807 |
[10] |
B. Buffoni, F. Giannoni. Brake periodic orbits of prescribed Hamiltonian for indefinite Lagrangian systems. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 217-222. doi: 10.3934/dcds.1995.1.217 |
[11] |
Mark Pollicott. Closed orbits and homology for $C^2$-flows. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 529-534. doi: 10.3934/dcds.1999.5.529 |
[12] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[13] |
Fatima Ezzahra Lembarki, Jaume Llibre. Periodic orbits for a generalized Friedmann-Robertson-Walker Hamiltonian system in dimension $6$. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1165-1211. doi: 10.3934/dcdss.2015.8.1165 |
[14] |
Ana Cristina Mereu, Marco Antonio Teixeira. Reversibility and branching of periodic orbits. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1177-1199. doi: 10.3934/dcds.2013.33.1177 |
[15] |
Ilie Ugarcovici. On hyperbolic measures and periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 505-512. doi: 10.3934/dcds.2006.16.505 |
[16] |
Katrin Gelfert, Christian Wolf. On the distribution of periodic orbits. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 949-966. doi: 10.3934/dcds.2010.26.949 |
[17] |
Jacky Cresson, Christophe Guillet. Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 451-470. doi: 10.3934/dcds.2003.9.451 |
[18] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[19] |
Hans Koch, Héctor E. Lomelí. On Hamiltonian flows whose orbits are straight lines. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2091-2104. doi: 10.3934/dcds.2014.34.2091 |
[20] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Homoclinic orbits for a class of asymptotically quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2855-2878. doi: 10.3934/cpaa.2019128 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]