-
Previous Article
Boundedness of solutions in a class of Duffing equations with a bounded restore force
- DCDS Home
- This Issue
-
Next Article
Global existence of solutions of an activator-inhibitor system
Averaging of time - periodic systems without a small parameter
1. | Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France |
2. | Département Terre-Atmosphère-Océan and, Laboratoire de Météorologie Dynamique du CNRS/IPSL, École Normale Supérieure, Paris, France |
3. | Laboratoire de Météorologie Dynamique du CNRS/IPSL, École Normale Supérieure, Paris, France |
4. | Institute of Geophysics and Planetary Physics, University of California, Los Angeles, United States |
Using these transformations, it is possible to correct the solution of an averaged system by recovering the oscillatory components of the original non-averaged system. In this framework, the inverse transformations are also defined explicitly by formal series; they allow the estimation of appropriate initial data for each higher-order averaged system, respecting the equivalence relation.
Finally, we show how these methods can be used for identifying and computing periodic solutions for a very large class of nonlinear systems with time-periodic forcing. We test the validity of our approach by analyzing both the first-order and the second-order averaged system for a problem in atmospheric chemistry.
[1] |
Ruichao Guo, Yong Li, Jiamin Xing, Xue Yang. Existence of periodic solutions of dynamic equations on time scales by averaging. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 959-971. doi: 10.3934/dcdss.2017050 |
[2] |
S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604 |
[3] |
Misael Avendaño-Camacho, Isaac Hasse-Armengol, Eduardo Velasco-Barreras, Yury Vorobiev. The method of averaging for Poisson connections on foliations and its applications. Journal of Geometric Mechanics, 2020, 12 (3) : 343-361. doi: 10.3934/jgm.2020015 |
[4] |
Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070 |
[5] |
Wei Mao, Liangjian Hu, Surong You, Xuerong Mao. The averaging method for multivalued SDEs with jumps and non-Lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4937-4954. doi: 10.3934/dcdsb.2019039 |
[6] |
Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049 |
[7] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[8] |
Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959 |
[9] |
David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353 |
[10] |
Jiawei Dou, Lan-sun Chen, Kaitai Li. A monotone-iterative method for finding periodic solutions of an impulsive competition system on tumor-normal cell interaction. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 555-562. doi: 10.3934/dcdsb.2004.4.555 |
[11] |
Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016 |
[12] |
Weina Wang, Chunlin Wu, Jiansong Deng. Piecewise constant signal and image denoising using a selective averaging method with multiple neighbors. Inverse Problems and Imaging, 2019, 13 (5) : 903-930. doi: 10.3934/ipi.2019041 |
[13] |
Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, Vladimir A. Sharafutdinov. Momentum ray transforms. Inverse Problems and Imaging, 2019, 13 (3) : 679-701. doi: 10.3934/ipi.2019031 |
[14] |
P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785 |
[15] |
François James, Nicolas Vauchelet. Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1355-1382. doi: 10.3934/dcds.2016.36.1355 |
[16] |
Nicholas Hoell, Guillaume Bal. Ray transforms on a conformal class of curves. Inverse Problems and Imaging, 2014, 8 (1) : 103-125. doi: 10.3934/ipi.2014.8.103 |
[17] |
Guo Lin, Shuxia Pan. Periodic traveling wave solutions of periodic integrodifference systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3005-3031. doi: 10.3934/dcdsb.2020049 |
[18] |
José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure and Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213 |
[19] |
Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132 |
[20] |
Corrado Falcolini, Laura Tedeschini-Lalli. A numerical renormalization method for quasi–conservative periodic attractors. Journal of Computational Dynamics, 2020, 7 (2) : 461-468. doi: 10.3934/jcd.2020018 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]