-
Previous Article
Errata
- DCDS Home
- This Issue
-
Next Article
Regularity of forward-in-time self-similar solutions to the 3D Navier-Stokes equations
Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms
1. | Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON, Canada |
2. | Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON M5S 2E4, Canada |
3. | All-Russian Institute of Electrotechnics, Istra, Moscow region, Russian Federation |
[1] |
Mark Pollicott. Ergodicity of stable manifolds for nilpotent extensions of Anosov flows. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 599-604. doi: 10.3934/dcds.2002.8.599 |
[2] |
Jon Chaika, Rodrigo Treviño. Logarithmic laws and unique ergodicity. Journal of Modern Dynamics, 2017, 11: 563-588. doi: 10.3934/jmd.2017022 |
[3] |
Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133 |
[4] |
F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74 |
[5] |
Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621 |
[6] |
François Ledrappier, Omri Sarig. Unique ergodicity for non-uniquely ergodic horocycle flows. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 411-433. doi: 10.3934/dcds.2006.16.411 |
[7] |
Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63 |
[8] |
C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897 |
[9] |
Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233 |
[10] |
Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119 |
[11] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[12] |
Karl Grill, Christian Tutschka. Ergodicity of two particles with attractive interaction. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4831-4838. doi: 10.3934/dcds.2015.35.4831 |
[13] |
Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287 |
[14] |
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187 |
[15] |
Zhenzhong Zhang, Enhua Zhang, Jinying Tong. Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2433-2455. doi: 10.3934/dcdsb.2018053 |
[16] |
Tianlong Shen, Jianhua Huang. Ergodicity of the stochastic coupled fractional Ginzburg-Landau equations driven by α-stable noise. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 605-625. doi: 10.3934/dcdsb.2017029 |
[17] |
Jan Philipp Schröder. Ergodicity and topological entropy of geodesic flows on surfaces. Journal of Modern Dynamics, 2015, 9: 147-167. doi: 10.3934/jmd.2015.9.147 |
[18] |
Marianne Akian, Stéphane Gaubert, Antoine Hochart. Ergodicity conditions for zero-sum games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3901-3931. doi: 10.3934/dcds.2015.35.3901 |
[19] |
David Ralston, Serge Troubetzkoy. Ergodicity of certain cocycles over certain interval exchanges. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2523-2529. doi: 10.3934/dcds.2013.33.2523 |
[20] |
Jon Aaronson, Michael Bromberg, Nishant Chandgotia. Rational ergodicity of step function skew products. Journal of Modern Dynamics, 2018, 13: 1-42. doi: 10.3934/jmd.2018012 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]