February  2006, 15(1): 37-59. doi: 10.3934/dcds.2006.15.37

Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards

1. 

Mathematical Institute of the Technical University of Budapest, Egry József u. 1, H/41/A, H-1111 Budapest, Hungary

2. 

Alfréd Rényi Institute of the Hungarian Academy of Sciences, Reáltanoda u. 13–15, H-1053 Budapest, Hungary

Received  January 2005 Revised  June 2005 Published  February 2006

When considering hyperbolicity in multi-dimensional Hamiltonian sytems, especially in higher dimensional billiards, the literature usually distinguishes between dispersing and defocusing mechanisms. In this paper we give a unified treatment of these two phenomena, which also covers the important case when the two mechanisms mix. Two theorems on the hyperbolicity (i.e. non-vanishing of the Lyapunov exponents) are proven that are hoped to be applicable to a variety of situations.
   As an application we investigate soft billiards, that is, replace the hard core collision in dispersing billiards with disjoint spherical scatterers by motion in some spherically symmetric potential. Analogous systems in two dimensions have been widely investigated in the literature, however, we are not aware of any mathematical result in this multi-dimensional case. Hyperbolicity is proven under suitable conditions on the potential. This way we give a natural generalization of the hyperbolicity results obtained before in two dimensions for a large class of potentials.
Citation: Péter Bálint, Imre Péter Tóth. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 37-59. doi: 10.3934/dcds.2006.15.37
[1]

Mickaël Kourganoff. Uniform hyperbolicity in nonflat billiards. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1145-1160. doi: 10.3934/dcds.2018048

[2]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[3]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[4]

Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5163-5190. doi: 10.3934/dcds.2017224

[5]

Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431

[6]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[7]

Álvaro Pelayo, San Vű Ngọc. First steps in symplectic and spectral theory of integrable systems. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3325-3377. doi: 10.3934/dcds.2012.32.3325

[8]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[9]

Antonio Giorgilli. Unstable equilibria of Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 855-871. doi: 10.3934/dcds.2001.7.855

[10]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[11]

Edward Hooton, Pavel Kravetc, Dmitrii Rachinskii, Qingwen Hu. Selective Pyragas control of Hamiltonian systems. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2019-2034. doi: 10.3934/dcdss.2019130

[12]

Marcin Mazur, Jacek Tabor, Piotr Kościelniak. Semi-hyperbolicity and hyperbolicity. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1029-1038. doi: 10.3934/dcds.2008.20.1029

[13]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[14]

K. Tintarev. Critical values and minimal periods for autonomous Hamiltonian systems. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 389-400. doi: 10.3934/dcds.1995.1.389

[15]

Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249

[16]

Abed Bounemoura, Edouard Pennamen. Instability for a priori unstable Hamiltonian systems: A dynamical approach. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 753-793. doi: 10.3934/dcds.2012.32.753

[17]

Carles Simó. Measuring the total amount of chaos in some Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5135-5164. doi: 10.3934/dcds.2014.34.5135

[18]

Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069

[19]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[20]

Lora Billings, Erik M. Bollt, David Morgan, Ira B. Schwartz. Stochastic global bifurcation in perturbed Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 123-132. doi: 10.3934/proc.2003.2003.123

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]