May  2006, 15(2): 379-394. doi: 10.3934/dcds.2006.15.379

Deformation of entire functions with Baker domains

1. 

Dept. de Mat. Aplicada i Anàlisi, Univ. de Barcelona, Gran Via 585, 08007 Barcelona, Spain

2. 

The Technical University of Denmark, Building 303, DK-2800 Lyngby, Denmark

Received  June 2004 Revised  December 2005 Published  March 2006

We consider entire transcendental functions $f$ with an invariant (or periodic) Baker domain $U$. First, we classify these domains into three types (hyperbolic, simply parabolic and doubly parabolic) according to the surface they induce when we take the quotient by the dynamics. Second, we study the space of quasiconformal deformations of an entire map with such a Baker domain by studying its Teichmüller space. More precisely, we show that the dimension of this set is infinite if the Baker domain is hyperbolic or simply parabolic, and from this we deduce that the quasiconformal deformation space of $f$ is infinite dimensional. Finally, we prove that the function $f(z)=z+e^{-z}$, which possesses infinitely many invariant Baker domains, is rigid, i.e., any quasiconformal deformation of $f$ is affinely conjugate to $f$.
Citation: Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379
[1]

Koh Katagata. Transcendental entire functions whose Julia sets contain any infinite collection of quasiconformal copies of quadratic Julia sets. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5319-5337. doi: 10.3934/dcds.2019217

[2]

Janina Kotus, Mariusz Urbański. The dynamics and geometry of the Fatou functions. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 291-338. doi: 10.3934/dcds.2005.13.291

[3]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[4]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

[5]

Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535

[6]

Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405

[7]

Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1

[8]

Jeremy Kahn, Alex Wright. Hodge and Teichmüller. Journal of Modern Dynamics, 2022, 18: 149-160. doi: 10.3934/jmd.2022007

[9]

Patricia Domínguez, Peter Makienko, Guillermo Sienra. Ruelle operator and transcendental entire maps. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 773-789. doi: 10.3934/dcds.2005.12.773

[10]

Giovanni Forni. On the Brin Prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations. Journal of Modern Dynamics, 2012, 6 (2) : 139-182. doi: 10.3934/jmd.2012.6.139

[11]

Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3&4) : 271-436. doi: 10.3934/jmd.2014.8.271

[12]

Stefano Marmi. Some arithmetical aspects of renormalization in Teichmüller dynamics: On the occasion of Corinna Ulcigrai winning the Brin Prize. Journal of Modern Dynamics, 2022, 18: 131-147. doi: 10.3934/jmd.2022006

[13]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[14]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

[15]

David Aulicino, Chaya Norton. Shimura–Teichmüller curves in genus 5. Journal of Modern Dynamics, 2020, 16: 255-288. doi: 10.3934/jmd.2020009

[16]

Chi Po Choi, Xianfeng Gu, Lok Ming Lui. Subdivision connectivity remeshing via Teichmüller extremal map. Inverse Problems and Imaging, 2017, 11 (5) : 825-855. doi: 10.3934/ipi.2017039

[17]

Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002

[18]

Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 475-500. doi: 10.3934/dcdss.2016008

[19]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[20]

Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]