-
Previous Article
Branches of harmonic solutions to periodically perturbed coupled differential equations on manifolds
- DCDS Home
- This Issue
-
Next Article
Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term
Periodic solutions for discrete convex Hamiltonian systems via Clarke duality
1. | College of Mathematics and Econometrics, Hunan University, College of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong, 510405, China |
2. | College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, 410082, China |
3. | College of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong, 510405, China |
[1] |
Yu Tian, John R. Graef, Lingju Kong, Min Wang. Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle. Conference Publications, 2013, 2013 (special) : 759-769. doi: 10.3934/proc.2013.2013.759 |
[2] |
Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983 |
[3] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[4] |
Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707 |
[5] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[6] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
[7] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
[8] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[9] |
Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure and Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49 |
[10] |
Luigi Ambrosio, Camillo Brena. Stability of a class of action functionals depending on convex functions. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022055 |
[11] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial and Management Optimization, 2022, 18 (2) : 731-745. doi: 10.3934/jimo.2020176 |
[12] |
Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1929-1940. doi: 10.3934/cpaa.2015.14.1929 |
[13] |
Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734 |
[14] |
Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021 |
[15] |
S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271 |
[16] |
Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951-959. doi: 10.3934/proc.2003.2003.951 |
[17] |
Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017 |
[18] |
Mitsuru Shibayama. Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2705-2715. doi: 10.3934/dcds.2017116 |
[19] |
Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361 |
[20] |
Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]