-
Previous Article
The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$
- DCDS Home
- This Issue
-
Next Article
Small-data scattering for nonlinear waves with potential and initial data of critical decay
Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system
1. | LMAM, School of Mathematics, Peking University, Beijing, 100871, China |
2. | Department of Mathematics, Tsinghua University, Beijing, 100084, China |
3. | Peking University, Beijing, 100871, China |
[1] |
Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014 |
[2] |
Julián López-Gómez, Marcela Molina-Meyer, Andrea Tellini. Spiraling bifurcation diagrams in superlinear indefinite problems. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1561-1588. doi: 10.3934/dcds.2015.35.1561 |
[3] |
Fabiana Maria Ferreira, Francisco Odair de Paiva. On a resonant and superlinear elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5775-5784. doi: 10.3934/dcds.2019253 |
[4] |
Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079 |
[5] |
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 |
[6] |
Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050 |
[7] |
Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 |
[8] |
Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169 |
[9] |
Philip Korman. Infinitely many solutions and Morse index for non-autonomous elliptic problems. Communications on Pure and Applied Analysis, 2020, 19 (1) : 31-46. doi: 10.3934/cpaa.2020003 |
[10] |
Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure and Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507 |
[11] |
Belgacem Rahal, Cherif Zaidi. On finite Morse index solutions of higher order fractional elliptic equations. Evolution Equations and Control Theory, 2021, 10 (3) : 575-597. doi: 10.3934/eect.2020081 |
[12] |
Kelei Wang. Recent progress on stable and finite Morse index solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 3805-3816. doi: 10.3934/era.2021062 |
[13] |
Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure and Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339 |
[14] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 |
[15] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 |
[16] |
Shuying He, Rumei Zhang, Fukun Zhao. A note on a superlinear and periodic elliptic system in the whole space. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1149-1163. doi: 10.3934/cpaa.2011.10.1149 |
[17] |
Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258 |
[18] |
Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences & Engineering, 2013, 10 (3) : 637-647. doi: 10.3934/mbe.2013.10.637 |
[19] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[20] |
Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control and Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]