-
Previous Article
On the density of hyperbolicity and homoclinic bifurcations for 3D-diffeomorphisms in attracting regions
- DCDS Home
- This Issue
-
Next Article
Convergence to V-shaped fronts in curvature flows for spatially non-decaying initial perturbations
The cyclicity of period annuli of some classes of reversible quadratic systems
1. | UFR de Mathématiques, Laboratoire P. Painlevé, UMR 8524, Université de Lille 1, 59655 Villeneuve d’Ascq, France, France |
2. | LMAM and School of Mathematical Science, Peking University, Beijing 100871, China |
3. | Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona |
[1] |
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447 |
[2] |
Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123 |
[3] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[4] |
Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803 |
[5] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5581-5599. doi: 10.3934/dcdsb.2020368 |
[6] |
Wenye Liu, Maoan Han. Limit cycle bifurcations of near-Hamiltonian systems with multiple switching curves and applications. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022053 |
[7] |
Yuan Chang, Yuzhen Bai. Limit cycle bifurcations by perturbing piecewise Hamiltonian systems with a nonregular switching line via multiple parameters. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022090 |
[8] |
Paul H. Rabinowitz. On a class of reversible elliptic systems. Networks and Heterogeneous Media, 2012, 7 (4) : 927-939. doi: 10.3934/nhm.2012.7.927 |
[9] |
Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439 |
[10] |
Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure and Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583 |
[11] |
Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure and Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1 |
[12] |
Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081 |
[13] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[14] |
Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 |
[15] |
Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147 |
[16] |
Yutian Lei. On the integral systems with negative exponents. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039 |
[17] |
André Vanderbauwhede. Continuation and bifurcation of multi-symmetric solutions in reversible Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 359-363. doi: 10.3934/dcds.2013.33.359 |
[18] |
B. Coll, Chengzhi Li, Rafel Prohens. Quadratic perturbations of a class of quadratic reversible systems with two centers. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 699-729. doi: 10.3934/dcds.2009.24.699 |
[19] |
Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure and Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703 |
[20] |
Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]