-
Previous Article
Traveling pulses for the Klein-Gordon equation on a lattice or continuum with long-range interaction
- DCDS Home
- This Issue
-
Next Article
On the density of hyperbolicity and homoclinic bifurcations for 3D-diffeomorphisms in attracting regions
The existence of integrable invariant manifolds of Hamiltonian partial differential equations
1. | College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
2. | Department of Mathematics, Nanjing University, Nanjing 210093, China |
[1] |
Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081 |
[2] |
Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 |
[3] |
Claudio A. Buzzi, Jeroen S.W. Lamb. Reversible Hamiltonian Liapunov center theorem. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 51-66. doi: 10.3934/dcdsb.2005.5.51 |
[4] |
Božidar Jovanović, Vladimir Jovanović. Virtual billiards in pseudo–euclidean spaces: Discrete hamiltonian and contact integrability. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5163-5190. doi: 10.3934/dcds.2017224 |
[5] |
Shaoyun Shi, Wenlei Li. Non-integrability of generalized Yang-Mills Hamiltonian system. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1645-1655. doi: 10.3934/dcds.2013.33.1645 |
[6] |
Jaume Llibre, Yuzhou Tian. Meromorphic integrability of the Hamiltonian systems with homogeneous potentials of degree -4. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021228 |
[7] |
Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[8] |
Deconinck Bernard, Olga Trichtchenko. High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1323-1358. doi: 10.3934/dcds.2017055 |
[9] |
Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623 |
[10] |
Lorenzo Valvo, Ugo Locatelli. Hamiltonian control of magnetic field lines: Computer assisted results proving the existence of KAM barriers. Journal of Computational Dynamics, 2022 doi: 10.3934/jcd.2022002 |
[11] |
Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092 |
[12] |
Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022013 |
[13] |
Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589 |
[14] |
Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707 |
[15] |
A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126 |
[16] |
Frank Trujillo. Uniqueness properties of the KAM curve. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5165-5182. doi: 10.3934/dcds.2021072 |
[17] |
Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 533-544. doi: 10.3934/dcdss.2010.3.533 |
[18] |
Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481 |
[19] |
Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107 |
[20] |
Klas Modin, Olivier Verdier. Integrability of nonholonomically coupled oscillators. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1121-1130. doi: 10.3934/dcds.2014.34.1121 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]