
Previous Article
Symbolic extension entropy: $c^r$ examples, products and flows
 DCDS Home
 This Issue

Next Article
Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures
Existence of stable manifolds for nonuniformly hyperbolic $c^1$ dynamics
1.  Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049001 Lisboa 
2.  Departamento de Matemática, Instituto Superior Técnico, 1049001 Lisboa 
[1] 
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331348. doi: 10.3934/jmd.2020012 
[2] 
Luis Barreira, Claudia Valls. Regularity of center manifolds under nonuniform hyperbolicity. Discrete & Continuous Dynamical Systems, 2011, 30 (1) : 5576. doi: 10.3934/dcds.2011.30.55 
[3] 
Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 3550. doi: 10.3934/dcds.2001.7.35 
[4] 
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233268. doi: 10.3934/dcds.1999.5.233 
[5] 
Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123146. doi: 10.3934/jmd.2007.1.123 
[6] 
José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 141. doi: 10.3934/dcds.2016.36.1 
[7] 
George Osipenko. Indestructibility of invariant locally nonunique manifolds. Discrete & Continuous Dynamical Systems, 1996, 2 (2) : 203219. doi: 10.3934/dcds.1996.2.203 
[8] 
Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133140. doi: 10.3934/proc.2003.2003.133 
[9] 
Christopher K. R. T. Jones, SiuKei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete & Continuous Dynamical Systems  S, 2009, 2 (4) : 9671023. doi: 10.3934/dcdss.2009.2.967 
[10] 
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Invariant manifolds as pullback attractors of nonautonomous differential equations. Discrete & Continuous Dynamical Systems, 2006, 15 (2) : 579596. doi: 10.3934/dcds.2006.15.579 
[11] 
Arturo EcheverríaEnríquez, Alberto Ibort, Miguel C. MuñozLecanda, Narciso RománRoy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397419. doi: 10.3934/jgm.2012.4.397 
[12] 
Roberto Castelli. Efficient representation of invariant manifolds of periodic orbits in the CRTBP. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 563586. doi: 10.3934/dcdsb.2018197 
[13] 
Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 138. doi: 10.3934/jcd.2014.1.1 
[14] 
Clara CufíCabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021, 41 (10) : 46674704. doi: 10.3934/dcds.2021053 
[15] 
Alexey Gorshkov. Stable invariant manifolds with application to control problems. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021040 
[16] 
Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207209. doi: 10.3934/jmd.2010.4.207 
[17] 
Paweł Lubowiecki, Henryk Żołądek. The HessAppelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443467. doi: 10.3934/jgm.2012.4.443 
[18] 
Jun Shen, Kening Lu, Bixiang Wang. Invariant manifolds and foliations for random differential equations driven by colored noise. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 62016246. doi: 10.3934/dcds.2020276 
[19] 
I. Baldomá, Àlex Haro. One dimensional invariant manifolds of Gevrey type in realanalytic maps. Discrete & Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 295322. doi: 10.3934/dcdsb.2008.10.295 
[20] 
Bixiang Wang. Meansquare random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 14491468. doi: 10.3934/dcds.2020324 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]