June  2006, 16(2): 395-410. doi: 10.3934/dcds.2006.16.395

Entropy via multiplicity

1. 

Institute of Mathematics and Statistics, University of Troms∅, N-9037 Troms∅

Received  November 2004 Revised  May 2006 Published  July 2006

The topological entropy of piecewise affine maps is studied. It is shown that singularities may contribute to the entropy only if there is angular expansion and we bound the entropy via the expansion rates of the map. As a corollary, we deduce that non-expanding conformal piecewise affine maps have zero topological entropy. We estimate the entropy of piecewise affine skew-products. Examples of abnormal entropy growth are provided.
Citation: Boris Kruglikov, Martin Rypdal. Entropy via multiplicity. Discrete & Continuous Dynamical Systems, 2006, 16 (2) : 395-410. doi: 10.3934/dcds.2006.16.395
[1]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[2]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[3]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[4]

Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753

[5]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[6]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[7]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[8]

Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451

[9]

Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Michel Laurent, Arnaldo Nogueira. Dynamics of 2-interval piecewise affine maps and Hecke-Mahler series. Journal of Modern Dynamics, 2021, 17: 33-63. doi: 10.3934/jmd.2021002

[12]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[13]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[14]

Peng Sun. Measures of intermediate entropies for skew product diffeomorphisms. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1219-1231. doi: 10.3934/dcds.2010.27.1219

[15]

Haritha C, Nikita Agarwal. Product of expansive Markov maps with hole. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5743-5774. doi: 10.3934/dcds.2019252

[16]

Núria Fagella, Àngel Jorba, Marc Jorba-Cuscó, Joan Carles Tatjer. Classification of linear skew-products of the complex plane and an affine route to fractalization. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3767-3787. doi: 10.3934/dcds.2019153

[17]

Wen Huang, Leiye Xu, Shengnan Xu. Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. Electronic Research Archive, 2021, 29 (4) : 2819-2827. doi: 10.3934/era.2021015

[18]

Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020

[19]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[20]

Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]