September  2006, 16(3): 541-561. doi: 10.3934/dcds.2006.16.541

On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind

1. 

Computing Center, The 4th Clinical Polyclinic of Voronezh City, Russia 394077, Voronezh, Lizyukova 24, Russian Federation

Received  January 2006 Revised  June 2006 Published  August 2006

We study the Cauchy problem with bounded continuous initial-value functions for the differential-difference equation

$\frac{\partial u}{\partial t}= \sum$nk,j,m=1$ a_{kjm}\frac{\partial^2u}{\partial x_k\partial x_j} (x_1,...,x_{m-1},x_m+h_{kjm},x_{m+1},...,x_n,t),$

assuming that the operator on the right-hand side of the equation is strongly elliptic and the coefficients $a_{kjm}$ and $h_{kjm}$ are real. We prove that this Cauchy problem has a unique solution (in the sense of distributions) and this solution is classical in ${\mathbb R}^n \times (0,+\infty),$ find its integral representation, and construct a differential parabolic equation with constant coefficients such that the difference between its classical bounded solution satisfying the same initial-value function and the investigated solution of the differential-difference equation tends to zero as $t\to\infty$.

Citation: Andrey B. Muravnik. On the Cauchy problem for differential-difference parabolic equations with high-order nonlocal terms of general kind. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 541-561. doi: 10.3934/dcds.2006.16.541
[1]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[2]

Roger P. de Moura, Ailton C. Nascimento, Gleison N. Santos. On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping. Evolution Equations and Control Theory, 2022, 11 (3) : 711-727. doi: 10.3934/eect.2021022

[3]

Abdelkader Boucherif. Positive Solutions of second order differential equations with integral boundary conditions. Conference Publications, 2007, 2007 (Special) : 155-159. doi: 10.3934/proc.2007.2007.155

[4]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[5]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[6]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[7]

Rui Huang, Yifu Wang, Yuanyuan Ke. Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1005-1014. doi: 10.3934/dcdsb.2005.5.1005

[8]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[9]

Lu Chen, Guozhen Lu, Yansheng Shen. Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022073

[10]

N. V. Krylov. Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2495-2516. doi: 10.3934/cpaa.2018119

[11]

Shaohua Chen. Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms. Communications on Pure and Applied Analysis, 2009, 8 (2) : 587-600. doi: 10.3934/cpaa.2009.8.587

[12]

Luciano Abadías, Carlos Lizama, Pedro J. Miana, M. Pilar Velasco. On well-posedness of vector-valued fractional differential-difference equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2679-2708. doi: 10.3934/dcds.2019112

[13]

Elena-Alexandra Melnig. Internal feedback stabilization for parabolic systems coupled in zero or first order terms. Evolution Equations and Control Theory, 2021, 10 (2) : 333-351. doi: 10.3934/eect.2020069

[14]

John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533

[15]

Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016

[16]

Lesia V. Baranovska. Pursuit differential-difference games with pure time-lag. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1021-1031. doi: 10.3934/dcdsb.2019004

[17]

Rong Zhang. Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022078

[18]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure and Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[19]

Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031

[20]

Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Representation formulas of solutions and bifurcation sheets to a nonlocal Allen-Cahn equation. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4907-4925. doi: 10.3934/dcds.2020205

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]