\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dimension and ergodic decompositions for hyperbolic flows

Abstract Related Papers Cited by
  • For conformal hyperbolic flows, we establish explicit formulas for the Hausdorff dimension and for the pointwise dimension of an arbitrary invariant measure. We emphasize that these measures are not necessarily ergodic. The formula for the pointwise dimension is expressed in terms of the local entropy and of the Lyapunov exponents. We note that this formula was obtained before only in the special case of (ergodic) equilibrium measures, and these always possess a local product structure (which is not the case for arbitrary invariant measures). The formula for the pointwise dimension allows us to show that the Hausdorff dimension of a (nonergodic) invariant measure is equal to the essential supremum of the Hausdorff dimension of the measures in an ergodic decomposition.
    Mathematics Subject Classification: Primary: 37C40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return