-
Previous Article
Nonexistence of limit cycles for a class of structurally stable quadratic vector fields
- DCDS Home
- This Issue
-
Next Article
Pseudo-orbit shadowing in the $C^1$ topology
Hopf bifurcation at infinity for planar vector fields
1. | Universitat de València, Departament de Geometria y Topologia, Dr. Moliner s/n CP: 46100 Burjassot, València, Spain |
2. | Universidad de Santiago de Chile, Departamento de Matemática y C.C., Casilla 307, Correo 2, Santiago |
3. | ICMC-USP, São Carlos, Caixa Postal 668, CEP 13560-970, São Carlos, SP |
[1] |
Xiao-Song Yang. Index sums of isolated singular points of positive vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1033-1039. doi: 10.3934/dcds.2009.25.1033 |
[2] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[3] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[4] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5251-5279. doi: 10.3934/dcdsb.2020342 |
[5] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[6] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[7] |
Aleksander Ćwiszewski, Wojciech Kryszewski. On a generalized Poincaré-Hopf formula in infinite dimensions. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 953-978. doi: 10.3934/dcds.2011.29.953 |
[8] |
Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415 |
[9] |
Markus Banagl. Singular spaces and generalized Poincaré complexes. Electronic Research Announcements, 2009, 16: 63-73. doi: 10.3934/era.2009.16.63 |
[10] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[11] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[12] |
Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165 |
[13] |
Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387 |
[14] |
Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243 |
[15] |
Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098 |
[16] |
Fernando Antoneli, Ana Paula S. Dias, Rui Paiva. Coupled cell networks: Hopf bifurcation and interior symmetry. Conference Publications, 2011, 2011 (Special) : 71-78. doi: 10.3934/proc.2011.2011.71 |
[17] |
R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147 |
[18] |
Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197 |
[19] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[20] |
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022069 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]