April  2007, 17(2): 371-386. doi: 10.3934/dcds.2007.17.371

Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures

1. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, C. P. 68.530, 21.945-970 Rio de Janeiro, RJ, Brazil

Received  December 2005 Revised  September 2006 Published  November 2006

We obtain results on existence and continuity of physical measures through equilibrium states and apply these to non-uniformly expanding transformations on compact manifolds with non-flat critical sets, deducing sufficient conditions for continuity of physical measures and, for local diffeomorphisms, necessary and sufficient conditions for stochastic stability. In particular we show that, under certain conditions, stochastically robust non-uniform expansion implies existence and continuous variation of physical measures.
Citation: Vítor Araújo. Semicontinuity of entropy, existence of equilibrium states and continuity of physical measures. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 371-386. doi: 10.3934/dcds.2007.17.371
[1]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[2]

V. M. Gundlach, Yu. Kifer. Expansiveness, specification, and equilibrium states for random bundle transformations. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 89-120. doi: 10.3934/dcds.2000.6.89

[3]

Suzete Maria Afonso, Vanessa Ramos, Jaqueline Siqueira. Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4485-4513. doi: 10.3934/dcds.2021045

[4]

Siniša Slijepčević. Stability of invariant measures. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[5]

Nils Raabe, Claus Weihs. Physical statistical modelling of bending vibrations. Conference Publications, 2011, 2011 (Special) : 1214-1223. doi: 10.3934/proc.2011.2011.1214

[6]

Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete & Continuous Dynamical Systems, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579

[7]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515

[8]

Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69

[9]

Vítor Araújo, Ali Tahzibi. Physical measures at the boundary of hyperbolic maps. Discrete & Continuous Dynamical Systems, 2008, 20 (4) : 849-876. doi: 10.3934/dcds.2008.20.849

[10]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[11]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[12]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[13]

Philip Boyland, André de Carvalho, Toby Hall. Statistical stability for Barge-Martin attractors derived from tent maps. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 2903-2915. doi: 10.3934/dcds.2020154

[14]

Stefano Galatolo, Alfonso Sorrentino. Quantitative statistical stability and linear response for irrational rotations and diffeomorphisms of the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021138

[15]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[17]

Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 231-248. doi: 10.3934/dcdsb.2015.20.231

[18]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[19]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[20]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]