# American Institute of Mathematical Sciences

August  2007, 17(3): 671-689. doi: 10.3934/dcds.2007.17.671

## On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps

 1 School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia

Received  February 2006 Revised  July 2006 Published  December 2006

Perron-Frobenius operators and their eigendecompositions are increasingly being used as tools of global analysis for higher dimensional systems. The numerical computation of large, isolated eigenvalues and their corresponding eigenfunctions can reveal important persistent structures such as almost-invariant sets, however, often little can be said rigorously about such calculations. We attempt to explain some of the numerically observed behaviour by constructing a hyperbolic map with a Perron-Frobenius operator whose eigendecomposition is representative of numerical calculations for hyperbolic systems. We explicitly construct an eigenfunction associated with an isolated eigenvalue and prove that a special form of Ulam's method well approximates the isolated spectrum and eigenfunctions of this map.
Citation: Gary Froyland. On Ulam approximation of the isolated spectrum and eigenfunctions of hyperbolic maps. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 671-689. doi: 10.3934/dcds.2007.17.671
 [1] Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003 [2] Martin Lustig, Caglar Uyanik. Perron-Frobenius theory and frequency convergence for reducible substitutions. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 355-385. doi: 10.3934/dcds.2017015 [3] Gary Froyland, Ognjen Stancevic. Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 457-472. doi: 10.3934/dcdsb.2010.14.457 [4] Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009 [5] Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135 [6] Stefan Klus, Christof Schütte. Towards tensor-based methods for the numerical approximation of the Perron--Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (2) : 139-161. doi: 10.3934/jcd.2016007 [7] Christopher Bose, Rua Murray. The exact rate of approximation in Ulam's method. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 219-235. doi: 10.3934/dcds.2001.7.219 [8] Jiu Ding, Noah H. Rhee. A unified maximum entropy method via spline functions for Frobenius-Perron operators. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 235-245. doi: 10.3934/naco.2013.3.235 [9] Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure and Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433 [10] Rua Murray. Ulam's method for some non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1007-1018. doi: 10.3934/dcds.2010.26.1007 [11] Paweł Góra, Abraham Boyarsky. Stochastic perturbations and Ulam's method for W-shaped maps. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1937-1944. doi: 10.3934/dcds.2013.33.1937 [12] Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089 [13] Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013 [14] Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675 [15] Marc Kesseböhmer, Sabrina Kombrink. A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 335-352. doi: 10.3934/dcdss.2017016 [16] Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249 [17] R. Baier, M. Dellnitz, M. Hessel-von Molo, S. Sertl, I. G. Kevrekidis. The computation of convex invariant sets via Newton's method. Journal of Computational Dynamics, 2014, 1 (1) : 39-69. doi: 10.3934/jcd.2014.1.39 [18] James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667 [19] Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126 [20] Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64

2021 Impact Factor: 1.588